Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Style-Content Disentanglement in Language-Image Pretraining Representations for Zero-Shot Sketch-to-Image Synthesis (2206.01661v1)

Published 3 Jun 2022 in cs.CV

Abstract: In this work, we propose and validate a framework to leverage language-image pretraining representations for training-free zero-shot sketch-to-image synthesis. We show that disentangled content and style representations can be utilized to guide image generators to employ them as sketch-to-image generators without (re-)training any parameters. Our approach for disentangling style and content entails a simple method consisting of elementary arithmetic assuming compositionality of information in representations of input sketches. Our results demonstrate that this approach is competitive with state-of-the-art instance-level open-domain sketch-to-image models, while only depending on pretrained off-the-shelf models and a fraction of the data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.