Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mean field type equations on line bundle over a closed Riemann surface (2206.01437v1)

Published 3 Jun 2022 in math.AP

Abstract: Let $(\mathcal{L},\mathfrak{g})$ be a line bundle over a closed Riemann surface $(\Sigma,g)$, $\Gamma(\mathcal{L})$ be the set of all smooth sections, and $\mathcal{D}:\Gamma(\mathcal{L})\rightarrow T\ast\Sigma\otimes \Gamma(\mathcal{L})$ be a connection independent of the bundle metric $\mathfrak{g}$, where $T\ast\Sigma$ is the cotangent bundle. Suppose that there exists a global unit frame $\zeta$ on $\Gamma({\mathcal{L}})$. Precisely for any $\sigma\in\Gamma(\mathcal{L})$, there exists a unique smooth function $u:\Sigma\rightarrow\mathbb{R}$ such that $\sigma=u\zeta$ with $|\zeta|\equiv 1$ on $\Sigma$. For any real number $\rho$, we define a functional $\mathcal{J}\rho:W{1,2}(\Sigma,\mathcal{L})\rightarrow\mathbb{R}$ by $$\mathcal{J}\rho(\sigma)=\frac{1}{2}\int_\Sigma|\mathcal{D} \sigma|2dv_g+\frac{\rho} {|\Sigma|}\int_\Sigma\langle\sigma,\zeta\rangle dv_g-\rho\log\int_\Sigma h e{\langle\sigma,\zeta\rangle}dv_g,$$ where $W{1,2}(\Sigma,\mathcal{L})$ is a completion of $\Gamma(\mathcal{L})$ under the usual Sobolev norm, $|\Sigma|$ is the area of $(\Sigma,g)$, $h:\Sigma\rightarrow\mathbb{R}$ is a strictly positive smooth function and $\langle\cdot,\cdot\rangle$ is the inner product induced by $\mathfrak{g}$. The Euler-Lagrange equations of $\mathcal{J}\rho$ are called mean field type equations. Write $\mathcal{H}_0={\sigma\in W{1,2}(\Sigma,\mathcal{L}):\mathcal{D}\sigma=0}$ and $$\mathcal{H}_1=\left{\sigma\in W{1,2}(\Sigma,\mathcal{L}):\int\Sigma \langle\sigma,\tau\rangle dv_g=0,\,\,\forall \tau \in \mathcal{H}0\right}.$$ Based on the variational method, we prove that $\mathcal{J}\rho$ has a constraint critical point on the space $\mathcal{H}1$ for any $\rho<8\pi$; Based on blow-up analysis, we calculate the exact value of $\inf{\sigma\in\mathcal{H}1}\mathcal{J}{8\pi}(\sigma)$, provided that it is not achieved by any $\sigma\in\mathcal{H}_1$;

Summary

We haven't generated a summary for this paper yet.