Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary value problem for the mean field equation on a compact Riemann surface (2201.01544v1)

Published 5 Jan 2022 in math.DG and math.AP

Abstract: Let $(\Sigma,g)$ be a compact Riemann surface with smooth boundary $\partial\Sigma$, $\Delta_g$ be the Laplace-Beltrami operator, and $h$ be a positive smooth function. Using a min-max scheme introduced by Djadli-Malchiodi (2006) and Djadli (2008), we prove that if $\Sigma$ is non-contractible, then for any $\rho\in(8k\pi,8(k+1)\pi)$ with $k\in\mathbb{N}\ast$, the mean field equation $$\left{\begin{array}{lll} \Delta_g u=\rho\frac{heu}{\int_\Sigma heudv_g}&{\rm in}&\Sigma\[1.5ex] u=0&{\rm on}&\partial\Sigma \end{array}\right.$$ has a solution. This generalizes earlier existence results of Ding-Jost-Li-Wang (1999) and Chen-Lin (2003) in the Euclidean domain. Also we consider the corresponding Neumann boundary value problem. If $h$ is a positive smooth function, then for any $\rho\in(4k\pi,4(k+1)\pi)$ with $k\in\mathbb{N}\ast$, the mean field equation $$\left{\begin{array}{lll} \Delta_g u=\rho\left(\frac{heu}{\int_\Sigma heudv_g}-\frac{1}{|\Sigma|}\right)&{\rm in}&\Sigma\[1.5ex] \partial u/\partial{\mathbf{v}}=0&{\rm on}&\partial\Sigma \end{array}\right.$$ has a solution, where $\mathbf{v}$ denotes the unit normal outward vector on $\partial\Sigma$. Note that in this case we do not require the surface to be non-contractible.

Citations (3)

Summary

We haven't generated a summary for this paper yet.