Existence of solutions to a class of Kazdan-Warner equations on compact Riemannian surface (1706.08207v2)
Abstract: Let $(\Sigma,g)$ be a compact Riemannian surface without boundary and $\lambda_1(\Sigma)$ be the first eigenvalue of the Laplace-Beltrami operator $\Delta_g$. Let $h$ be a positive smooth function on $\Sigma$. Define a functional $$J_{\alpha,\beta}(u)=\frac{1}{2}\int_\Sigma(|\nabla_gu|2-\alpha u2)dv_g-\beta\log\int_\Sigma heudv_g$$ on a function space $\mathcal{H}=\left{u\in W{1,2}(\Sigma): \int_\Sigma udv_g=0\right}$. If $\alpha<\lambda_1(\Sigma)$ and $J_{\alpha,8\pi}$ has no minimizer on $\mathcal{H}$, then we calculate the infimum of $J_{\alpha,8\pi}$ on $\mathcal{H}$ by using the method of blow-up analysis. As a consequence, we give a sufficient condition under which a Kazdan-Warner equation has a solution. If $\alpha\geq \lambda_1(\Sigma)$, then $\inf_{u\in\mathcal{H}}J_{\alpha,8\pi}(u)=-\infty$. If $\beta>8\pi$, then for any $\alpha\in\mathbb{R}$, there holds $\inf_{u\in\mathcal{H}}J_{\alpha,\beta}(u)=-\infty$. Moreover, we consider the same problem in the case that $\alpha$ is large, where higher order eigenvalues are involved.