Papers
Topics
Authors
Recent
2000 character limit reached

Dual solutions in convex stochastic optimization (2205.15825v1)

Published 31 May 2022 in math.OC and math.PR

Abstract: This paper studies duality and optimality conditions for general convex stochastic optimization problems. The main result gives sufficient conditions for the absence of a duality gap and the existence of dual solutions in a locally convex space of random variables. It implies, in particular, the necessity of scenario-wise optimality conditions that are behind many fundamental results in operations research, stochastic optimal control and financial mathematics. Our analysis builds on the theory of Fr\'echet spaces of random variables whose topological dual can be identified with the direct sum of another space of random variables and a space of singular functionals. The results are illustrated by deriving sufficient and necessary optimality conditions for several more specific problem classes. We obtain significant extensions to earlier models e.g.\ on stochastic optimal control, portfolio optimization and mathematical programming.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.