Papers
Topics
Authors
Recent
2000 character limit reached

Equilibrium in a large Lotka-Volterra system with pairwise correlated interactions

Published 31 May 2022 in math.PR | (2205.15591v1)

Abstract: We study the equilibria of a large Lokta-Volterra system of coupled differential equations in the case where the interaction coefficients form a large random matrix. In the case where this random matrix follows an elliptic model , we study the existence of a (componentwise) positive equilibrium and describe a phase transition for the matrix normalization.If there is no positive equilibrium, we provide conditions on the model parameters for the existence of a stable equilibrium (with vanishing components) and state heuristics to compute the number of positive components of the equilibrium. Lotka-Volterra systems are important in mathematical biology/ theoretical ecology.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.