Causal Explanations for Sequential Decision Making Under Uncertainty (2205.15462v2)
Abstract: We introduce a novel framework for causal explanations of stochastic, sequential decision-making systems built on the well-studied structural causal model paradigm for causal reasoning. This single framework can identify multiple, semantically distinct explanations for agent actions -- something not previously possible. In this paper, we establish exact methods and several approximation techniques for causal inference on Markov decision processes using this framework, followed by results on the applicability of the exact methods and some run time bounds. We discuss several scenarios that illustrate the framework's flexibility and the results of experiments with human subjects that confirm the benefits of this approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.