Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

VoGE: A Differentiable Volume Renderer using Gaussian Ellipsoids for Analysis-by-Synthesis (2205.15401v3)

Published 30 May 2022 in cs.GR and cs.CV

Abstract: The Gaussian reconstruction kernels have been proposed by Westover (1990) and studied by the computer graphics community back in the 90s, which gives an alternative representation of object 3D geometry from meshes and point clouds. On the other hand, current state-of-the-art (SoTA) differentiable renderers, Liu et al. (2019), use rasterization to collect triangles or points on each image pixel and blend them based on the viewing distance. In this paper, we propose VoGE, which utilizes the volumetric Gaussian reconstruction kernels as geometric primitives. The VoGE rendering pipeline uses ray tracing to capture the nearest primitives and blends them as mixtures based on their volume density distributions along the rays. To efficiently render via VoGE, we propose an approximate closeform solution for the volume density aggregation and a coarse-to-fine rendering strategy. Finally, we provide a CUDA implementation of VoGE, which enables real-time level rendering with a competitive rendering speed in comparison to PyTorch3D. Quantitative and qualitative experiment results show VoGE outperforms SoTA counterparts when applied to various vision tasks, e.g., object pose estimation, shape/texture fitting, and occlusion reasoning. The VoGE library and demos are available at: https://github.com/Angtian/VoGE.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.