Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Tensor Network States with Low-Rank Tensors (2205.15296v1)

Published 30 May 2022 in cond-mat.str-el and quant-ph

Abstract: Tensor networks are used to efficiently approximate states of strongly-correlated quantum many-body systems. More generally, tensor network approximations may allow to reduce the costs for operating on an order-$N$ tensor from exponential to polynomial in $N$, and this has become a popular approach for machine learning. We introduce the idea of imposing low-rank constraints on the tensors that compose the tensor network. With this modification, the time and space complexities for the network optimization can be substantially reduced while maintaining high accuracy. We detail this idea for tree tensor network states (TTNS) and projected entangled-pair states. Simulations of spin models on Cayley trees with low-rank TTNS exemplify the effect of rank constraints on the expressive power. We find that choosing the tensor rank $r$ to be on the order of the bond dimension $m$, is sufficient to obtain high-accuracy groundstate approximations and to substantially outperform standard TTNS computations. Thus low-rank tensor networks are a promising route for the simulation of quantum matter and machine learning on large data sets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.