Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FedFormer: Contextual Federation with Attention in Reinforcement Learning (2205.13697v3)

Published 27 May 2022 in cs.LG, cs.AI, and cs.MA

Abstract: A core issue in multi-agent federated reinforcement learning is defining how to aggregate insights from multiple agents. This is commonly done by taking the average of each participating agent's model weights into one common model (FedAvg). We instead propose FedFormer, a novel federation strategy that utilizes Transformer Attention to contextually aggregate embeddings from models originating from different learner agents. In so doing, we attentively weigh the contributions of other agents with respect to the current agent's environment and learned relationships, thus providing a more effective and efficient federation. We evaluate our methods on the Meta-World environment and find that our approach yields significant improvements over FedAvg and non-federated Soft Actor-Critic single-agent methods. Our results compared to Soft Actor-Critic show that FedFormer achieves higher episodic return while still abiding by the privacy constraints of federated learning. Finally, we also demonstrate improvements in effectiveness with increased agent pools across all methods in certain tasks. This is contrasted by FedAvg, which fails to make noticeable improvements when scaled.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.