2000 character limit reached
Unsupervised Multi-object Segmentation Using Attention and Soft-argmax (2205.13271v2)
Published 26 May 2022 in cs.CV
Abstract: We introduce a new architecture for unsupervised object-centric representation learning and multi-object detection and segmentation, which uses a translation-equivariant attention mechanism to predict the coordinates of the objects present in the scene and to associate a feature vector to each object. A transformer encoder handles occlusions and redundant detections, and a convolutional autoencoder is in charge of background reconstruction. We show that this architecture significantly outperforms the state of the art on complex synthetic benchmarks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.