Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A proof of consistency and model-selection optimality on the empirical Bayes method (2205.13224v1)

Published 26 May 2022 in math.ST, physics.geo-ph, and stat.TH

Abstract: We study the consistency and optimality of the maximum marginal likelihood estimate (MMLE) in the hyperparameter inference for large-degree-of-freedom models. We perform main analyses within the exponential family, where the natural parameters are hyperparameters. First, we prove the consistency of the MMLE for the general linear models when estimating the scales of variance in the likelihood and prior. The proof is independent of the number ratio of data to model parameters and excepts the ill-posedness of the associated regularized least-square model-parameter estimate that is shown asymptotically unbiased. Second, we generalize the proof to other models with a finite number of hyperparameters. We find that the extensive properties of cost functions in the exponential family generally yield the consistency of the MMLE for the likelihood hyperparameters. Besides, we show the MMLE asymptotically almost surely minimizes the Kullback-Leibler divergence between the prior and true predictive distributions even if the true data distribution is outside the model space under the hypothetical asymptotic normality of the predictive distributions applicable to non-exponential model families. Our proof validates the empirical Bayes method using the hyperparameter MMLE in the asymptotics of many model parameters, ensuring the same qualification for the empirical-cross-entropy cross-validation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube