Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Integrated Gradient attribution for Gaussian Processes with non-Gaussian likelihoods (2205.12797v3)

Published 25 May 2022 in cs.LG and stat.ML

Abstract: Gaussian Process (GP) models are a powerful tool in probabilistic machine learning with a solid theoretical foundation. Thanks to current advances, modeling complex data with GPs is becoming increasingly feasible, which makes them an interesting alternative to deep learning and related approaches. As the latter are getting more and more influential on society, the need for making a model's decision making process transparent and explainable is now a major focus of research. A major direction in interpretable machine learning is the use of gradient-based approaches, such as Integrated Gradients, to quantify feature attribution, locally for a given datapoint of interest. Since GPs and the behavior of their partial derivatives are well studied and straightforward to derive, studying gradient-based explainability for GPs is a promising direction of research. Unfortunately, partial derivatives for GPs become less trivial to handle when dealing with non-Gaussian target data as in classification or more sophisticated regression problems. This paper therefore proposes an approach for applying Integrated Gradient-based explainability to non-Gaussian GP models, offering both analytical and approximate solutions. This extends gradient-based explainability to probabilistic models with complex likelihoods to extend their practical applicability.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: