Papers
Topics
Authors
Recent
Search
2000 character limit reached

Theoretical Analysis of Primal-Dual Algorithm for Non-Convex Stochastic Decentralized Optimization

Published 23 May 2022 in math.OC and cs.LG | (2205.11979v3)

Abstract: In recent years, decentralized learning has emerged as a powerful tool not only for large-scale machine learning, but also for preserving privacy. One of the key challenges in decentralized learning is that the data distribution held by each node is statistically heterogeneous. To address this challenge, the primal-dual algorithm called the Edge-Consensus Learning (ECL) was proposed and was experimentally shown to be robust to the heterogeneity of data distributions. However, the convergence rate of the ECL is provided only when the objective function is convex, and has not been shown in a standard machine learning setting where the objective function is non-convex. Furthermore, the intuitive reason why the ECL is robust to the heterogeneity of data distributions has not been investigated. In this work, we first investigate the relationship between the ECL and Gossip algorithm and show that the update formulas of the ECL can be regarded as correcting the local stochastic gradient in the Gossip algorithm. Then, we propose the Generalized ECL (G-ECL), which contains the ECL as a special case, and provide the convergence rates of the G-ECL in both (strongly) convex and non-convex settings, which do not depend on the heterogeneity of data distributions. Through synthetic experiments, we demonstrate that the numerical results of both the G-ECL and ECL coincide with the convergence rate of the G-ECL.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.