Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian error propagation for neural-net based parameter inference (2205.11587v2)

Published 23 May 2022 in astro-ph.IM and astro-ph.CO

Abstract: Neural nets have become popular to accelerate parameter inferences, especially for the upcoming generation of galaxy surveys in cosmology. As neural nets are approximative by nature, a recurrent question has been how to propagate the neural net's approximation error, in order to avoid biases in the parameter inference. We present a Bayesian solution to propagating a neural net's approximation error and thereby debiasing parameter inference. We exploit that a neural net reports its approximation errors during the validation phase. We capture the thus reported approximation errors via the highest-order summary statistics, allowing us to eliminate the neural net's bias during inference, and propagating its uncertainties. We demonstrate that our method is quickly implemented and successfully infers parameters even for strongly biased neural nets. In summary, our method provides the missing element to judge the accuracy of a posterior if it cannot be computed based on an infinitely accurately theory code.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.