Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamic Query Selection for Fast Visual Perceiver (2205.10873v2)

Published 22 May 2022 in cs.CV

Abstract: Transformers have been matching deep convolutional networks for vision architectures in recent works. Most work is focused on getting the best results on large-scale benchmarks, and scaling laws seem to be the most successful strategy: bigger models, more data, and longer training result in higher performance. However, the reduction of network complexity and inference time remains under-explored. The Perceiver model offers a solution to this problem: by first performing a Cross-attention with a fixed number Q of latent query tokens, the complexity of the L-layers Transformer network that follows is bounded by O(LQ2). In this work, we explore how to make Perceivers even more efficient, by reducing the number of queries Q during inference while limiting the accuracy drop.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.