Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Recent Advances in Rate Control: From Optimisation to Implementation and Beyond (2205.10815v2)

Published 22 May 2022 in cs.MM

Abstract: Video coding is a video compression technique that compresses the original video sequence to produce a smaller archive file or reduce the transmission bandwidth under constraints on the visual quality loss. Rate control (RC) plays a critical role in video coding. It can achieve stable stream output in practical applications, especially real-time video applications such as video conferencing or game live streaming. Most RC algorithms either directly or indirectly characterise the relationship between the bit rate (R) and quantisation (Q) and then allocate bits to every coding unit so as to guarantee the global bit rate and video quality level. This paper comprehensively reviews the classic RC technologies used in international video standards of past generations, analyses the mathematical models and implementation mechanisms of various schemes, and compares the performance of recent state-of-the-art RC algorithms. Finally, we discuss future directions and new application areas for RC methods. We hope that this review can help support the development, implementation, and application of RC for new video coding standards.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (151)
  1. “Cisco annual internet report white paper.” [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
  2. T. Smith, M. Obrist, and P. Wright, “Live-streaming changes the (video) game,” in Proceedings of the 11th european conference on Interactive TV and video, 2013, pp. 131–138.
  3. D. Marpe, T. Wiegand, and G. J. Sullivan, “The h. 264/mpeg4 advanced video coding standard and its applications,” IEEE communications magazine, vol. 44, no. 8, pp. 134–143, 2006.
  4. G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video coding (hevc) standard,” IEEE Transactions on circuits and systems for video technology, vol. 22, no. 12, pp. 1649–1668, 2012.
  5. B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-R. Ohm, “Overview of the versatile video coding (vvc) standard and its applications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3736–3764, 2021.
  6. T. Berger, “Rate-distortion theory,” Wiley Encyclopedia of Telecommunications, 2003.
  7. N. Tang, J. Cao, F. Liang, J. Wang, H. Liu, X. Wang, and X. Du, “Fast ctu partition decision algorithm for vvc intra and inter coding,” in 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).   IEEE, 2019, pp. 361–364.
  8. Y. Huang and R. P. Rao, “Predictive coding,” Wiley Interdisciplinary Reviews: Cognitive Science, vol. 2, no. 5, pp. 580–593, 2011.
  9. H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity transform and quantization in h. 264/avc,” IEEE Transactions on circuits and systems for video technology, vol. 13, no. 7, pp. 598–603, 2003.
  10. M. Budagavi, A. Fuldseth, and G. Bjøntegaard, “Hevc transform and quantization,” in High Efficiency Video Coding (HEVC).   Springer, 2014, pp. 141–169.
  11. A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Andersson, M. Zhou, and G. Van der Auwera, “Hevc deblocking filter,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1746–1754, 2012.
  12. V. Sze and M. Budagavi, “High throughput cabac entropy coding in hevc,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1778–1791, 2012.
  13. L. Wang, “Rate control for mpeg video coding,” Signal Processing: Image Communication, vol. 15, no. 6, pp. 493–511, 2000.
  14. J.-C. Tsai and C.-H. Shieh, “Modified tmn8 rate control for low-delay video communications,” IEEE transactions on circuits and systems for video technology, vol. 14, no. 6, pp. 864–868, 2004.
  15. Z. Li and F. Pan, “Adaptive basic unit layer rate control for jvt (jvt-g012),” in Joint Video Team (JVT) 7th Meeting at Pattaya, March. 2003.
  16. H. Choi, J. Nam, J. Yoo, and D. Sim, “Rate control based on unified rq model for hevc (jctvc-h0213),” in Joint Collaborative Team on Video Coding (JCT-VC) 8th Meeting, San José, CA, Feb. 2012.
  17. B. Li, H. Li, and L. Li, “Rate control by r-lambda model for hevc,” in ITU-T/ISO/IEC JCT-VC Document JCTVC-K0103, Oct. 2012.
  18. Y. Li and Z. Chen, “Rate control for vvc (jvet-k0390),” in Joint Video Experts Team (JVET) 11th Meeting, Ljubljana, SI, July 2018.
  19. Y. Liu, Z. G. Li, and Y. C. Soh, “A novel rate control scheme for low delay video communication of h.264/avc standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 1, pp. 68–78, 2007.
  20. S. Hu, H. Wang, S. Kwong, and T. Zhao, “Frame level rate control for h.264/avc with novel rate-quantization model,” in 2010 IEEE International Conference on Multimedia and Expo, 2010, pp. 226–231.
  21. B. Li and D. Zhang, “Qp determination by lambda value,” in Joint Collaborative Team on Video Coding (JCT-VC) 9th Meetting at Geneva, Apr. 2012.
  22. M. Karczewicz and X. Wang, “Intra frame rate control based on satd (jctvc-m0257),” in Joint Collaborative Team on Video Coding (JCT-VC) 13th Meeting, Incheon, KR, Apr. 2013.
  23. M. Fang, M. Tang, and J. Wen, “R-lambda model based rate control with pre-encoding process (jctvc-u0152),” in Joint Collaborative Team on Video Coding (JCT-VC) 21st Meeting, Warsaw, PL, June 2015.
  24. Z. He, Y. K. Kim, and S. Mitra, “Low-delay rate control for dct video coding via /spl rho/-domain source modeling,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 8, pp. 928–940, 2001.
  25. M. Liu, Y. Guo, H. Li, and C. W. Chen, “Low-complexity rate control based on rho-domain model for scalable video coding,” in 2010 IEEE International Conference on Image Processing, 2010, pp. 1277–1280.
  26. H.-J. Lee, T. Chiang, and Y.-Q. Zhang, “Scalable rate control for mpeg-4 video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, no. 6, pp. 878–894, 2000.
  27. Z. He and T. Chen, “Linear rate control for jvt video coding,” in International Conference on Information Technology: Research and Education, 2003. Proceedings. ITRE2003., 2003, pp. 65–68.
  28. M. Jiang, X. Yi, and N. Ling, “Improved frame-layer rate control for h.264 using mad ratio,” in 2004 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 3, 2004, pp. III–813.
  29. J. Xu and Y. He, “A novel rate control for h.264,” in 2004 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 3, 2004, pp. III–809.
  30. S. Ma, W. Gao, and Y. Lu, “Rate-distortion analysis for h.264/avc video coding and its application to rate control,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 12, pp. 1533–1544, 2005.
  31. W. Yuan, S. Lin, Y. Zhang, W. Yuan, and H. Luo, “Optimum bit allocation and rate control for h.264/avc,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 6, pp. 705–715, 2006.
  32. D.-K. Kwon, M.-Y. Shen, and C.-C. J. Kuo, “Rate control for h.264 video with enhanced rate and distortion models,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 5, pp. 517–529, 2007.
  33. H. Wang and S. Kwong, “Rate-distortion optimization of rate control for h.264 with adaptive initial quantization parameter determination,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 1, pp. 140–144, 2008.
  34. W.-J. Tsai and T.-L. Chou, “Scene change aware intra-frame rate control for h.264/avc,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 12, pp. 1882–1886, 2010.
  35. H.-M. Hu, B. Li, W. Lin, W. Li, and M.-T. Sun, “Region-based rate control for h.264/avc for low bit-rate applications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 11, pp. 1564–1576, 2012.
  36. X. Liang, Q. Wang, Y. Zhou, B. Luo, and A. Men, “A novel rq model based rate control scheme in hevc,” in 2013 Visual Communications and Image Processing (VCIP).   IEEE, 2013, pp. 1–6.
  37. S. Wang, S. Ma, L. Zhang, S. Wang, D. Zhao, and W. Gao, “Multi layer based rate control algorithm for hevc,” in 2013 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2013, pp. 41–44.
  38. L. Tian, Y. Zhou, and X. Cao, “A new rate-complexity-qp algorithm (rcqa) for hevc intra-picture rate control,” in 2014 International Conference on Computing, Networking and Communications (ICNC).   IEEE, 2014, pp. 375–380.
  39. W. Wu, J. Liu, and L. Feng, “Novel rate control scheme for low delay video coding of hevc,” ETRI Journal, vol. 38, no. 1, pp. 185–194, 2016.
  40. B. Hosking, D. Agrafiotis, D. Bull, and N. Eastern, “An adaptive resolution rate control method for intra coding in hevc,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 1486–1490.
  41. Y. Mao, M. Wang, S. Wang, and S. Kwong, “High efficiency rate control for versatile video coding based on composite cauchy distribution,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 4, pp. 2371–2384, 2022.
  42. C. R. Helmrich, I. Zupancic, J. Brandenburg, V. George, A. Wieckowski, and B. Bross, “Visually optimized two-pass rate control for video coding using the low-complexity xpsnr model,” in 2021 International Conference on Visual Communications and Image Processing (VCIP).   IEEE, 2021, pp. 1–5.
  43. M. Wang and B. Yan, “Lagrangian multiplier based joint three-layer rate control for h.264/avc,” IEEE Signal Processing Letters, vol. 16, no. 8, pp. 679–682, 2009.
  44. B. Lee, M. Kim, and T. Q. Nguyen, “A frame-level rate control scheme based on texture and nontexture rate models for high efficiency video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 3, pp. 465–479, 2013.
  45. B. Li, H. Li, L. Li, and J. Zhang, “λ𝜆\lambdaitalic_λ domain rate control algorithm for high efficiency video coding,” IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 3841–3854, 2014.
  46. M. Meddeb, M. Cagnazzo, and B. Pesquet-Popescu, “Region-of-interest-based rate control scheme for high-efficiency video coding,” APSIPA Transactions on Signal and Information Processing, vol. 3, 2014.
  47. Z. Yang, L. Song, Z. Luo, and X. Wang, “Low delay rate control for hevc,” in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting.   IEEE, 2014, pp. 1–5.
  48. M. Zhou, X. Wei, S. Wang, S. Kwong, C.-K. Fong, P. H. Wong, W. Y. Yuen, and W. Gao, “Ssim-based global optimization for ctu-level rate control in hevc,” IEEE Transactions on Multimedia, vol. 21, no. 8, pp. 1921–1933, 2019.
  49. M. Wang, K. N. Ngan, and H. Li, “An efficient frame-content based intra frame rate control for high efficiency video coding,” IEEE Signal Processing Letters, vol. 22, no. 7, pp. 896–900, 2015.
  50. H. Zeng, A. Yang, K. N. Ngan, and M. Wang, “Perceptual sensitivity-based rate control method for high efficiency video coding,” Multimedia tools and applications, vol. 75, no. 17, pp. 10 383–10 396, 2016.
  51. M. Zhou, Y. Zhang, B. Li, and H.-M. Hu, “Complexity-based intra frame rate control by jointing inter-frame correlation for high efficiency video coding,” Journal of Visual Communication and Image Representation, vol. 42, pp. 46–64, 2017.
  52. S. Li, M. Xu, Z. Wang, and X. Sun, “Optimal bit allocation for ctu level rate control in hevc,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 11, pp. 2409–2424, 2017.
  53. M. Wang, K. N. Ngan, and H. Li, “Low-delay rate control for consistent quality using distortion-based lagrange multiplier,” IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 2943–2955, 2016.
  54. V. Sanchez, “Rate control for hevc intra-coding based on piecewise linear approximations,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 1782–1786.
  55. Y. Gong, S. Wan, K. Yang, H. R. Wu, and Y. Liu, “Temporal-layer-motivated lambda domain picture level rate control for random-access configuration in h.265/hevc,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 1, pp. 156–170, 2019.
  56. K. R. Perez-Daniel and V. Sanchez, “Luma-aware multi-model rate-control for hdr content in hevc,” in 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 1022–1026.
  57. H. Guo, C. Zhu, S. Li, and Y. Gao, “Optimal bit allocation at frame level for rate control in hevc,” IEEE Transactions on Broadcasting, vol. 65, no. 2, pp. 270–281, 2018.
  58. W. Li, P. Ren, E. Zhang, and F. Zhao, “Rate control for hevc intra-coding with a ctu-dependent distortion model,” Signal, Image and Video Processing, vol. 13, no. 1, pp. 17–25, 2019.
  59. J. Mir, D. S. Talagala, and A. Fernando, “Optimization of hevc λ𝜆\lambdaitalic_λ-domain rate control algorithm for hdr video,” in 2018 IEEE International Conference on Consumer Electronics (ICCE), 2018, pp. 1–4.
  60. M. Zhou, X. Wei, S. Wang, S. Kwong, C.-K. Fong, P. H. Wong, and W. Y. Yuen, “Global rate-distortion optimization-based rate control for hevc hdr coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 12, pp. 4648–4662, 2019.
  61. W. Lim and D. Sim, “A perceptual rate control algorithm based on luminance adaptation for hevc encoders,” Signal, Image and Video Processing, vol. 14, no. 5, pp. 887–895, 2020.
  62. Z. Chen and X. Pan, “An optimized rate control for low-delay h. 265/hevc,” IEEE Transactions on Image Processing, vol. 28, no. 9, pp. 4541–4552, 2019.
  63. M. Zhou, X. Wei, S. Kwong, W. Jia, and B. Fang, “Just noticeable distortion-based perceptual rate control in hevc,” IEEE Transactions on Image Processing, vol. 29, pp. 7603–7614, 2020.
  64. M. H. Hyun, B. Lee, and M. Kim, “A frame-level constant bit-rate control using recursive bayesian estimation for versatile video coding,” IEEE Access, vol. 8, pp. 227 255–227 269, 2020.
  65. Y. Chen, S. Kwong, M. Zhou, S. Wang, G. Zhu, and Y. Wang, “Intra frame rate control for versatile video coding with quadratic rate-distortion modelling,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2020, pp. 4422–4426.
  66. Y. Li, Z. Liu, Z. Chen, and S. Liu, “Rate control for versatile video coding,” in 2020 IEEE International Conference on Image Processing (ICIP).   IEEE, 2020, pp. 1176–1180.
  67. F. Liu and Z. Chen, “Multi-objective optimization of quality in vvc rate control for low-delay video coding,” IEEE Transactions on Image Processing, vol. 30, pp. 4706–4718, 2021.
  68. Z. Li, F. Pan, K. Lim, X. Lin, and S. Rahardja, “Adaptive rate control for h.264,” in 2004 International Conference on Image Processing, 2004. ICIP ’04., vol. 2, 2004, pp. 745–748 Vol.2.
  69. J. Si, S. Ma, X. Zhang, and W. Gao, “Adaptive rate control for high efficiency video coding,” in 2012 Visual Communications and Image Processing, 2012, pp. 1–6.
  70. Y.-J. Yoon, H. Kim, S.-h. Jung, D. Jun, Y. Kim, J. S. Choi, and S.-J. Ko, “A new rate control method for hierarchical video coding in hevc,” in IEEE International symposium on Broadband Multimedia Systems and Broadcasting.   IEEE, 2012, pp. 1–4.
  71. J. Si, S. Ma, and W. Gao, “Adaptive rate control for hevc (jctvc-j0057),” in Joint Collaborative Team on Video Coding (JCT-VC) 10th Meeting, Stockholm, SE, July 2012.
  72. H. Zhihai, Y. Kim, and S. Mitra, “Low-delay rate control for dct video coding via p-domain source modeling,” IEEE Trans on CSTV, vol. 11, no. 8, pp. 813–816, 2001.
  73. Z. He, Y. K. Kim, and S. Mitra, “ρ𝜌\rhoitalic_ρ-domain source modeling and rate control for video coding and transmission,” in 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), vol. 3, 2001, pp. 1773–1776 vol.3.
  74. I.-H. Shin, Y.-L. Lee, and H. Park, “Rate control using linear rate-ρ𝜌\rhoitalic_ρ model for h.264,” Signal Processing: Image Communication, vol. 19, no. 4, pp. 341–352, 2004.
  75. S. Wang, S. Ma, S. Wang, D. Zhao, and W. Gao, “Rate-gop based rate control for high efficiency video coding,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp. 1101–1111, 2013.
  76. ——, “Quadratic ρ𝜌\rhoitalic_ρ-domain based rate control algorithm for hevc,” 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1695–1699, 2013.
  77. T. Biatek, M. Raulet, J.-F. Travers, and O. Deforges, “Efficient quantization parameter estimation in hevc based on ρ𝜌\rhoitalic_ρ-domain,” in European Signal Processing Conference, 2014.
  78. A. A. Ramanand, I. Ahmad, and V. Swaminathan, “A survey of rate control in hevc and shvc video encoding,” in 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), 2017, pp. 145–150.
  79. J. Wen, M. Fang, and M. Tang, “R-lambda model based rate control with pre-encoding process (jctvc-t0216),” in Joint Collaborative Team on Video Coding (JCT-VC) 20th Meeting, vGeneva, CH, Feb. 2015.
  80. M. Tang, J. Wen, and Y. Han, “A generalized rate-distortion-λ𝜆\lambdaitalic_λ model based HEVC rate control algorithm,” CoRR, vol. abs/1911.00639, 2019. [Online]. Available: http://arxiv.org/abs/1911.00639
  81. T. Li, L. Yu, H. Wang, and Z. Kuang, “A bit allocation method based on inter-view dependency and spatio-temporal correlation for multi-view texture video coding,” IEEE Transactions on Broadcasting, vol. 67, no. 1, pp. 159–173, 2021.
  82. H. Guo, C. Zhu, Y. Gao, and S. Song, “A frame-level rate control scheme for low delay video coding in hevc,” in 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP), 2017, pp. 1–6.
  83. Z. Liu, Z. Chen, and Y. Li, “Ahg10: Quality dependency factor based rate control for vvc (jvet-m0600),” in Joint Video Experts Team (JVET) 13th Meeting, Marrakech, MA, Jan. 2019.
  84. F. Liu, Z. Liu, Y. Li, and Z. Chen, “Ahg10: Extension of rate control to support random access configuration with gop size of 32 (jvet-t0062),” in Joint Video Experts Team (JVET) 20th Meeting by teleconference, Oct. 2020.
  85. G. Ren, J. Jia, J. Wang, and Z. Chen, “Ahg10: An improved vvc rate control scheme ( jvet-y0105),” in Joint Video Experts Team (JVET) 21th Meeting, by teleconference, Jan. 2022.
  86. W. Gao, S. Kwong, and Y. Jia, “Joint machine learning and game theory for rate control in high efficiency video coding,” IEEE Transactions on Image Processing, vol. 26, no. 12, pp. 6074–6089, 2017.
  87. J.-H. Hu, W.-H. Peng, and C.-H. Chung, “Reinforcement learning for hevc/h. 265 intra-frame rate control,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2018, pp. 1–5.
  88. M. Zhou, X. Wei, S. Kwong, W. Jia, and B. Fang, “Rate control method based on deep reinforcement learning for dynamic video sequences in hevc,” IEEE Transactions on Multimedia, vol. 23, pp. 1106–1121, 2020.
  89. X. Wei, M. Zhou, S. Kwong, H. Yuan, and T. Xiang, “Joint reinforcement learning and game theory bitrate control method for 360-degree dynamic adaptive streaming,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2021, pp. 4230–4234.
  90. F. Raufmehr, M. R. Salehi, and E. Abiri, “A frame-level mlp-based bit-rate controller for real-time video transmission using vvc standard,” Journal of Real-Time Image Processing, vol. 18, no. 3, pp. 751–763, 2021.
  91. R. Farhad, S. M. Reza, and A. Ebrahim, “A neural network-based video bit-rate control algorithm for variable bit-rate applications of versatile video coding standard,” Signal Processing: Image Communication, vol. 96, p. 116317, 2021.
  92. M. Wang, J. Zhang, L. Huang, and J. Xiong, “Machine learning-based rate distortion modeling for vvc/h. 266 intra-frame,” in 2021 IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2021, pp. 1–6.
  93. L. Xu, S. Ma, D. Zhao, and W. Gao, “Rate control for scalable video model,” in Visual Communications and Image Processing 2005, S. Li, F. Pereira, H.-Y. Shum, and A. G. Tescher, Eds., vol. 5960, International Society for Optics and Photonics.   SPIE, 2005, pp. 525 – 534.
  94. Y. Liu, Z. G. Li, and Y. C. Soh, “Rate control of h.264/avc scalable extension,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 1, pp. 116–121, 2008.
  95. Y. Pitrey, M. Babel, O. Déforges, and J. Viéron, “ρ𝜌\rhoitalic_ρ-domain based rate control scheme for spatial, temporal, and quality scalable video coding,” in Visual Communications and Image Processing 2009, M. Rabbani and R. L. Stevenson, Eds., vol. 7257, International Society for Optics and Photonics.   SPIE, 2009, pp. 25 – 32.
  96. S. Hu, H. Wang, S. Kwong, T. Zhao, and C.-C. J. Kuo, “Rate control optimization for temporal-layer scalable video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 8, pp. 1152–1162, 2011.
  97. Y. Li, D. Liu, and Z. Chen, “Ahg9-related: Cnn-based lambda-domain rate control for intra frames (jvet-m0215),” in Joint Video Experts Team (JVET) 13th Meeting, Marrakech, MA, Jan. 2019.
  98. G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “Dvc: An end-to-end deep video compression framework,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11 006–11 015.
  99. X. Jing, L.-P. Chau, and W.-C. Siu, “Frame complexity-based rate-quantization model for h.264/avc intraframe rate control,” IEEE Signal Processing Letters, vol. 15, pp. 373–376, 2008.
  100. Z. Liu, H. Yan, L. Shen, Y. Wang, and Z. Zhang, “A motion attention model based rate control algorithm for h.264/avc,” in 2009 Eighth IEEE/ACIS International Conference on Computer and Information Science, 2009, pp. 568–573.
  101. L. Shen, Z. Liu, and Z. Zhang, “A novel h.264 rate control algorithm with consideration of visual attention,” Multimed Tools Appl, vol. 63, p. 709–727, 2013.
  102. J. Ribas-Corbera and S. Lei, “Rate control in dct video coding for low-delay communications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, no. 1, pp. 172–185, 1999.
  103. C.-W. Seo, J.-H. Moon, and J.-K. Han, “Rate control for consistent objective quality in high efficiency video coding,” IEEE transactions on image processing, vol. 22, no. 6, pp. 2442–2454, 2013.
  104. W.-N. Lie, C.-F. Chen, and T. C.-I. Lin, “Two-pass rate-distortion optimized rate control technique for h. 264/avc video,” in Visual Communications and Image Processing 2005, vol. 5960.   International Society for Optics and Photonics, 2005, p. 596035.
  105. S. Wang, A. Rehman, K. Zeng, and Z. Wang, “Ssim-inspired two-pass rate control for high efficiency video coding,” in 2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP), 2015, pp. 1–5.
  106. I. Zupancic, M. Naccari, M. Mrak, and E. Izquierdo, “Two-pass rate control for improved quality of experience in uhdtv delivery,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 1, pp. 167–179, 2017.
  107. C. Meenderinck, A. Azevedo, B. Juurlink, M. Alvarez Mesa, and A. Ramirez, “Parallel scalability of video decoders,” Journal of Signal Processing Systems, vol. 57, no. 2, pp. 173–194, 2009.
  108. Z. Ling, X. J. Jiang, and J. J. Liu, “Efficiency of dynamic gop length in video stream,” in Advanced Materials Research, vol. 765.   Trans Tech Publ, 2013, pp. 879–884.
  109. M. Roitzsch, “Slice-balancing h. 264 video encoding for improved scalability of multicore decoding,” in Proceedings of the 7th ACM & IEEE international conference on Embedded software, 2007, pp. 269–278.
  110. C. Blumenberg, D. Palomino, S. Bampi, and B. Zatt, “Adaptive content-based tile partitioning algorithm for the hevc standard,” in 2013 Picture Coding Symposium (PCS).   IEEE, 2013, pp. 185–188.
  111. M. Koziri, P. K. Papadopoulos, and T. Loukopoulos, “Combining tile parallelism with slice partitioning in video coding,” in Applications of Digital Image Processing XLI, vol. 10752.   International Society for Optics and Photonics, 2018, p. 107520N.
  112. M. Karczewicz, N. Hu, J. Taquet, C.-Y. Chen, K. Misra, K. Andersson, P. Yin, T. Lu, E. François, and J. Chen, “Vvc in-loop filters,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3907–3925, 2021.
  113. E. B. Van Der Tol, E. G. Jaspers, and R. H. Gelderblom, “Mapping of h. 264 decoding on a multiprocessor architecture,” in Image and Video Communications and Processing 2003, vol. 5022.   International Society for Optics and Photonics, 2003, pp. 707–718.
  114. M. Alvarez-Mesa, V. George, T. Schierl, and B. Juurlink, “Improving parallelization efficiency of wpp using overlapped wavefront,” Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J0425, Stockholm, vol. 3, 2012.
  115. G. Clare and F. Henry, “An hevc transcoder converting non-parallel bitstreams to/from wpp,” Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J0032, Stockholm, 2012.
  116. J. Sainio, A. Mercat, and J. Vanne, “Parallel implementations of lambda domain and r-lambda model rate control schemes in a practical hevc encoder,” in 2021 Data Compression Conference (DCC), 2021, pp. 368–368.
  117. P. Xu, K. Chen, J. Sun, X. Ji, and Z. Guo, “An adaptive intra-frame parallel method based on complexity estimation for hevc,” in 2016 Visual Communications and Image Processing (VCIP), 2016, pp. 1–4.
  118. S. Wang, S. Zhang, J. Wang, L. Chang, L. Feng, and X. Fan, “Hardware architecture design of hevc entropy decoding,” in 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), 2021, pp. 1143–1150.
  119. S. Xu, M. Yu, S. Fang, Z. Peng, X. Wang, and G. Jiang, “New rate control optimization algorithm for hevc aiming at discontinuous scene,” WSEAS Transactions on computers, vol. 14, no. 1, pp. 598–606, 2015.
  120. F. Song, C. Zhu, Y. Liu, and Y. Zhou, “A new gop level bit allocation method for hevc rate control,” in 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB).   IEEE, 2017, pp. 1–4.
  121. L. Li, B. Li, H. Li, and C. W. Chen, “λ𝜆\lambdaitalic_λ domain optimal bit allocation algorithm for high efficiency video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 1, pp. 130–142, 2016.
  122. H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the h.264/avc standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–1120, 2007.
  123. M. Flierl and B. Girod, “Generalized b pictures and the draft h.264/avc video-compression standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 587–597, 2003.
  124. C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, “Evaluating mapreduce for multi-core and multiprocessor systems,” in 2007 IEEE 13th International Symposium on High Performance Computer Architecture.   Ieee, 2007, pp. 13–24.
  125. F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, “Jvet common test conditions and software reference configurations for sdr video (joint video experts team (jvet) of itu-t sg 16 wp 3 and iso/iec jtc 1/sc 29/wg 11, jvet-n1010-v1),” in Joint Video Exploration Team (JVET) 14th Meeting, Geneva, CH, Apr. 2019.
  126. F. Bossen, “Common conditions and software reference configurations (jvt-j1100),” in Joint Collaborative Team on Video Coding (JCT-VC) 8th Meeting, Feb. 2012.
  127. G. Bjontegaard, “Calculation of average psnr differences between rd-curves,” VCEG-M33, 2001.
  128. L. Bai, L. Song, R. Xie, L. Zhang, and Z. Luo, “Rate control model for high dynamic range video,” in 2017 IEEE Visual Communications and Image Processing (VCIP), 2017, pp. 1–4.
  129. J. Kim, S.-H. Bae, and M. Kim, “An hevc-compliant perceptual video coding scheme based on jnd models for variable block-sized transform kernels,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 11, pp. 1786–1800, 2015.
  130. H. Wei, X. Zhou, W. Zhou, C. Yan, Z. Duan, and N. Shan, “Visual saliency based perceptual video coding in hevc,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 2547–2550.
  131. “Jm 9.4.” [Online]. Available: http://iphome.hhi.de/suehring/tml/download
  132. M. Zhou, X. Wei, C. Ji, T. Xiang, and B. Fang, “Optimum quality control algorithm for versatile video coding,” IEEE Transactions on Broadcasting, pp. 1–12, 2022.
  133. X. Meng, C. Jia, X. Zhang, S. Wang, and S. Ma, “Spatio-temporal correlation guided geometric partitioning for versatile video coding,” IEEE Transactions on Image Processing, vol. 31, pp. 30–42, 2022.
  134. Z. Huang, K. Lin, C. Jia, S. Wang, and S. Ma, “Beyond vvc: Towards perceptual quality optimized video compression using multi-scale hybrid approaches,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, pp. 1866–1869.
  135. M. Zhou, X. Wei, W. Jia, and S. Kwong, “Joint decision tree and visual feature rate control optimization for vvc uhd coding,” IEEE Transactions on Image Processing, vol. 32, pp. 219–234, 2023.
  136. B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan, and Y.-K. Wang, “Developments in international video coding standardization after avc, with an overview of versatile video coding (vvc),” Proceedings of the IEEE, vol. 109, no. 9, pp. 1463–1493, 2021.
  137. M. Benjak, H. Meuel, T. Laude, and J. Ostermann, “Enhanced machine learning-based inter coding for vvc,” in 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2021, pp. 021–025.
  138. M. Saldanha, G. Sanchez, C. Marcon, and L. Agostini, “Configurable fast block partitioning for vvc intra coding using light gradient boosting machine,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1, 2021.
  139. K. Fischer, C. Herglotz, and A. Kaup, “On versatile video coding at uhd with machine-learning-based super-resolution,” in 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), 2020, pp. 1–6.
  140. N. Le, H. Zhang, F. Cricri, R. Ghaznavi-Youvalari, H. R. Tavakoli, and E. Rahtu, “Learned image coding for machines: A content-adaptive approach,” in 2021 IEEE International Conference on Multimedia and Expo (ICME), 2021, pp. 1–6.
  141. H. Wang, L. Yu, J. Liang, H. Yin, T. Li, and S. Wang, “Hierarchical predictive coding-based jnd estimation for image compression,” IEEE Transactions on Image Processing, vol. 30, pp. 487–500, 2021.
  142. Y. Li and X. Mou, “Joint optimization for ssim-based ctu-level bit allocation and rate distortion optimization,” IEEE Transactions on Broadcasting, vol. 67, no. 2, pp. 500–511, 2021.
  143. A. Nakhaei and M. Rezaei, “Scene-level two-pass video rate controller for h. 265/hevc standard,” Multimedia Tools and Applications, vol. 80, no. 5, pp. 7023–7038, 2021.
  144. J. Chen, X. Luo, M. Hu, D. Wu, and Y. Zhou, “Sparkle: User-aware viewport prediction in 360-degree video streaming,” IEEE Transactions on Multimedia, vol. 23, pp. 3853–3866, 2021.
  145. F. Chiariotti, “A survey on 360-degree video: Coding, quality of experience and streaming,” Comput. Commun., vol. 177, pp. 133–155, 2021.
  146. V. Sanchez, “Rate control for predictive transform screen content video coding based on ransac,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 11, pp. 4422–4438, 2021.
  147. K. Perez-Daniel, F. Garcia-Ugalde, and V. Sanchez, “Scene-based imperceptible-visible watermarking for hdr video content,” in 2019 7th International Workshop on Biometrics and Forensics (IWBF), 2019, pp. 1–6.
  148. H. Yuan, Q. Wang, Q. Liu, J. Huo, and P. Li, “Hybrid distortion-based rate-distortion optimization and rate control for h.265/hevc,” IEEE Transactions on Consumer Electronics, vol. 67, no. 2, pp. 97–106, 2021.
  149. Q. Zhang, H. Meng, Z. Feng, and Z. Han, “Resource scheduling of time-sensitive services for b5g/6g connected automated vehicles,” IEEE Internet of Things Journal, pp. 1–1, 2022.
  150. Y. Cui, Q. Zhang, Z. Feng, Z. Wei, C. Shi, J. Fan, and P. Zhang, “Dual identities enabled low-latency visual networking for uav emergency communication,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 474–479.
  151. A. M. Girgis, J. Park, M. Bennis, and M. Debbah, “Predictive control and communication co-design via two-way gaussian process regression and aoi-aware scheduling,” IEEE Transactions on Communications, vol. 69, no. 10, pp. 7077–7093, 2021.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube