Papers
Topics
Authors
Recent
2000 character limit reached

Equivariant Mesh Attention Networks (2205.10662v2)

Published 21 May 2022 in cs.LG, cs.CV, and stat.ML

Abstract: Equivariance to symmetries has proven to be a powerful inductive bias in deep learning research. Recent works on mesh processing have concentrated on various kinds of natural symmetries, including translations, rotations, scaling, node permutations, and gauge transformations. To date, no existing architecture is equivariant to all of these transformations. In this paper, we present an attention-based architecture for mesh data that is provably equivariant to all transformations mentioned above. Our pipeline relies on the use of relative tangential features: a simple, effective, equivariance-friendly alternative to raw node positions as inputs. Experiments on the FAUST and TOSCA datasets confirm that our proposed architecture achieves improved performance on these benchmarks and is indeed equivariant, and therefore robust, to a wide variety of local/global transformations.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.