Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A SSIM Guided cGAN Architecture For Clinically Driven Generative Image Synthesis of Multiplexed Spatial Proteomics Channels (2205.10373v2)

Published 20 May 2022 in eess.IV, cs.CV, q-bio.QM, and q-bio.TO

Abstract: Here we present a structural similarity index measure (SSIM) guided conditional Generative Adversarial Network (cGAN) that generatively performs image-to-image (i2i) synthesis to generate photo-accurate protein channels in multiplexed spatial proteomics images. This approach can be utilized to accurately generate missing spatial proteomics channels that were not included during experimental data collection either at the bench or the clinic. Experimental spatial proteomic data from the Human BioMolecular Atlas Program (HuBMAP) was used to generate spatial representations of missing proteins through a U-Net based image synthesis pipeline. HuBMAP channels were hierarchically clustered by the (SSIM) as a heuristic to obtain the minimal set needed to recapitulate the underlying biology represented by the spatial landscape of proteins. We subsequently prove that our SSIM based architecture allows for scaling of generative image synthesis to slides with up to 100 channels, which is better than current state of the art algorithms which are limited to data with 11 channels. We validate these claims by generating a new experimental spatial proteomics data set from human lung adenocarcinoma tissue sections and show that a model trained on HuBMAP can accurately synthesize channels from our new data set. The ability to recapitulate experimental data from sparsely stained multiplexed histological slides containing spatial proteomic will have tremendous impact on medical diagnostics and drug development, and also raises important questions on the medical ethics of utilizing data produced by generative image synthesis in the clinical setting. The algorithm that we present in this paper will allow researchers and clinicians to save time and costs in proteomics based histological staining while also increasing the amount of data that they can generate through their experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. S.-R. Shi, Y. Shi, and C. R. Taylor, “Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades,” Journal of Histochemistry & Cytochemistry, vol. 59, no. 1, pp. 13–32, 2011.
  2. H. Tada, K. Gonda, M. Miyashita, and N. Ohuchi, “Potential clinical applications of next generation fluorescence immunohistochemistry for multiplexed and quantitative determination of biomarker in breast cancer,” Int J Pathol Clin Res, vol. 2, p. 022, 2016.
  3. W. C. C. Tan, S. N. Nerurkar, H. Y. Cai, H. H. M. Ng, D. Wu, Y. T. F. Wee, J. C. T. Lim, J. Yeong, and T. K. H. Lim, “Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy,” Cancer Communications, vol. 40, no. 4, pp. 135–153, 2020.
  4. N. Lopes, C. H. Bergsland, M. Bjørnslett, T. Pellinen, A. Svindland, A. Nesbakken, R. Almeida, R. A. Lothe, L. David, and J. Bruun, “Digital image analysis of multiplex fluorescence ihc in colorectal cancer recognizes the prognostic value of cdx2 and its negative correlation with sox2,” Laboratory Investigation, vol. 100, no. 1, pp. 120–134, 2020.
  5. E. C. Stack, C. Wang, K. A. Roman, and C. C. Hoyt, “Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of tyramide signal amplification, multispectral imaging and multiplex analysis,” Methods, vol. 70, no. 1, pp. 46–58, 2014.
  6. P. K. Chattopadhyay and M. Roederer, “Cytometry: today’s technology and tomorrow’s horizons,” Methods, vol. 57, no. 3, pp. 251–258, 2012.
  7. Y. Goltsev, N. Samusik, J. Kennedy-Darling, S. Bhate, M. Hale, G. Vazquez, S. Black, and G. P. Nolan, “Deep profiling of mouse splenic architecture with codex multiplexed imaging,” Cell, vol. 174, no. 4, pp. 968–981, 2018.
  8. C. M. Schürch, S. S. Bhate, G. L. Barlow, D. J. Phillips, L. Noti, I. Zlobec, P. Chu, S. Black, J. Demeter, D. R. McIlwain, et al., “Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front,” Cell, vol. 182, no. 5, pp. 1341–1359, 2020.
  9. S. Di Cataldo, E. Ficarra, A. Acquaviva, and E. Macii, “Automated segmentation of tissue images for computerized ihc analysis,” Computer methods and programs in biomedicine, vol. 100, no. 1, pp. 1–15, 2010.
  10. D. J. Fassler, S. Abousamra, R. Gupta, C. Chen, M. Zhao, D. Paredes, S. A. Batool, B. S. Knudsen, L. Escobar-Hoyos, K. R. Shroyer, et al., “Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images,” Diagnostic pathology, vol. 15, no. 1, pp. 1–11, 2020.
  11. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.
  12. B. Ghoshal, F. Hikmet, C. Pineau, A. Tucker, and C. Lindskog, “Deephistoclass: A novel strategy for confident classification of immunohistochemistry images using deep learning,” Molecular & Cellular Proteomics, vol. 20, 2021.
  13. W. Bulten, P. Bándi, J. Hoven, R. v. d. Loo, J. Lotz, N. Weiss, J. v. d. Laak, B. v. Ginneken, C. Hulsbergen-van de Kaa, and G. Litjens, “Epithelium segmentation using deep learning in h&e-stained prostate specimens with immunohistochemistry as reference standard,” Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.
  14. A. Zadeh Shirazi, M. D. McDonnell, E. Fornaciari, N. S. Bagherian, K. G. Scheer, M. S. Samuel, M. Yaghoobi, R. J. Ormsby, S. Poonnoose, D. J. Tumes, et al., “A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma,” British Journal of Cancer, vol. 125, no. 3, pp. 337–350, 2021.
  15. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE international conference on computer vision, pp. 2223–2232, 2017.
  16. M. E. Tschuchnig, G. J. Oostingh, and M. Gadermayr, “Generative adversarial networks in digital pathology: a survey on trends and future potential,” Patterns, vol. 1, no. 6, p. 100089, 2020.
  17. X. Yi, E. Walia, and P. Babyn, “Generative adversarial network in medical imaging: A review,” Medical image analysis, vol. 58, p. 101552, 2019.
  18. X. Yi and P. Babyn, “Sharpness-aware low-dose ct denoising using conditional generative adversarial network,” Journal of digital imaging, vol. 31, no. 5, pp. 655–669, 2018.
  19. M. Gadermayr, V. Appel, B. M. Klinkhammer, P. Boor, and D. Merhof, “Which way round? a study on the performance of stain-translation for segmenting arbitrarily dyed histological images,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 165–173, Springer, 2018.
  20. L. Gupta, B. M. Klinkhammer, P. Boor, D. Merhof, and M. Gadermayr, “Gan-based image enrichment in digital pathology boosts segmentation accuracy,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 631–639, Springer, 2019.
  21. Y. Bao, S. amd Tang, H. H. Lee, R. Gao, S. Chiron, I. Lyu, L. A. Coburn, K. T. Wilson, J. Roland, B. A. Landman, et al., “Random multi-channel image synthesis for multiplexed immunofluorescence imaging,” in MICCAI Workshop on Computational Pathology, pp. 36–46, PMLR, 2021.
  22. D. Schapiro, A. Sokolov, C. Yapp, Y.-A. Chen, J. L. Muhlich, J. Hess, A. L. Creason, A. J. Nirmal, G. J. Baker, M. K. Nariya, et al., “Mcmicro: A scalable, modular image-processing pipeline for multiplexed tissue imaging,” Nature methods, vol. 19, no. 3, pp. 311–315, 2022.
  23. D. Schapiro, C. Yapp, A. Sokolov, S. M. Reynolds, Y.-A. Chen, D. Sudar, Y. Xie, J. Muhlich, R. Arias-Camison, S. Arena, et al., “Miti minimum information guidelines for highly multiplexed tissue images,” Nature methods, vol. 19, no. 3, pp. 262–267, 2022.
  24. P. Gavrikov, “visualkeras.” \urlhttps://github.com/paulgavrikov/visualkeras, 2020.
  25. T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-resolution image synthesis and semantic manipulation with conditional gans,” 2017.
  26. H.-J. Jeong, Y.-J. Moon, E. Park, and H. Lee, “Solar coronal magnetic field extrapolation from synchronic data with ai-generated farside,” The Astrophysical Journal Letters, vol. 903, no. 2, p. L25, 2020.
  27. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125–1134, 2017.
  28. A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th international conference on pattern recognition, pp. 2366–2369, IEEE, 2010.
  29. H. Consortium, “The human body at cellular resolution: the nih human biomolecular atlas program,” Nature, vol. 574, no. 7777, p. 187, 2019.
  30. S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in python,” PeerJ, vol. 2, p. e453, 2014.
  31. J. Kapuscinski, “Dapi: a dna-specific fluorescent probe,” Biotechnic & histochemistry, vol. 70, no. 5, pp. 220–233, 1995.
  32. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
  33. S.-H. Kim, S.-I. Go, D. H. Song, S. W. Park, H. R. Kim, I. Jang, J. D. Kim, J. S. Lee, and G.-W. Lee, “Prognostic impact of cd8 and programmed death-ligand 1 expression in patients with resectable non-small cell lung cancer,” British journal of cancer, vol. 120, no. 5, pp. 547–554, 2019.
  34. J. Monkman, T. Taheri, M. Ebrahimi Warkiani, C. O’leary, R. Ladwa, D. Richard, K. O’Byrne, and A. Kulasinghe, “High-plex and high-throughput digital spatial profiling of non-small-cell lung cancer (nsclc),” Cancers, vol. 12, no. 12, p. 3551, 2020.
  35. N. Bouteldja, B. M. Klinkhammer, T. Schlaich, P. Boor, and D. Merhof, “Improving unsupervised stain-to-stain translation using self-supervision and meta-learning,” arXiv preprint arXiv:2112.08837, 2021.
  36. P. Salehi and A. Chalechale, “Pix2pix-based stain-to-stain translation: a solution for robust stain normalization in histopathology images analysis,” in 2020 International Conference on Machine Vision and Image Processing (MVIP), pp. 1–7, IEEE, 2020.
  37. P. Ghahremani, Y. Li, A. Kaufman, R. Vanguri, N. Greenwald, M. Angelo, T. J. Hollmann, and S. Nadeem, “Deepliif: Deep learning-inferred multiplex immunofluorescence for ihc image quantification,” bioRxiv, 2021.
  38. F. Mahmood, D. Borders, R. Chen, G. McKay, K. Salimian, A. Baras, and N. Durr, “Deep adversarial training for multi-organ nuclei segmentation in histopathology images. arxiv preprint,” arXiv preprint arXiv:1810.00236, 2018.
  39. T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-resolution image synthesis and semantic manipulation with conditional gans,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8798–8807, 2018.
  40. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  41. S. Fatumo, T. Chikowore, A. Choudhury, M. Ayub, A. R. Martin, and K. Kuchenbaecker, “A roadmap to increase diversity in genomic studies,” Nature Medicine, vol. 28, no. 2, pp. 243–250, 2022.
  42. S. A. Nasser, S. Shamsi, V. Bundele, B. Garg, and A. Sethi, “Perceptual cgan for mri super-resolution,” arXiv preprint arXiv:2201.09314, 2022.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.