An Artificial Neural Network Functionalized by Evolution (2205.10118v1)
Abstract: The topology of artificial neural networks has a significant effect on their performance. Characterizing efficient topology is a field of promising research in Artificial Intelligence. However, it is not a trivial task and it is mainly experimented on through convolutional neural networks. We propose a hybrid model which combines the tensor calculus of feed-forward neural networks with Pseudo-Darwinian mechanisms. This allows for finding topologies that are well adapted for elaboration of strategies, control problems or pattern recognition tasks. In particular, the model can provide adapted topologies at early evolutionary stages, and 'structural convergence', which can found applications in robotics, big-data and artificial life.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.