Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformers as Neural Augmentors: Class Conditional Sentence Generation via Variational Bayes (2205.09391v1)

Published 19 May 2022 in cs.CL and cs.LG

Abstract: Data augmentation methods for Natural Language Processing tasks are explored in recent years, however they are limited and it is hard to capture the diversity on sentence level. Besides, it is not always possible to perform data augmentation on supervised tasks. To address those problems, we propose a neural data augmentation method, which is a combination of Conditional Variational Autoencoder and encoder-decoder Transformer model. While encoding and decoding the input sentence, our model captures the syntactic and semantic representation of the input language with its class condition. Following the developments in the past years on pre-trained LLMs, we train and evaluate our models on several benchmarks to strengthen the downstream tasks. We compare our method with 3 different augmentation techniques. The presented results show that, our model increases the performance of current models compared to other data augmentation techniques with a small amount of computation power.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. M. Şafak Bilici (2 papers)
  2. Mehmet Fatih Amasyali (13 papers)
Citations (2)