Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MIDGARD: A Simulation Platform for Autonomous Navigation in Unstructured Environments (2205.08389v2)

Published 17 May 2022 in cs.RO

Abstract: We present MIDGARD, an open-source simulation platform for autonomous robot navigation in outdoor unstructured environments. MIDGARD is designed to enable the training of autonomous agents (e.g., unmanned ground vehicles) in photorealistic 3D environments, and to support the generalization skills of learning-based agents through the variability in training scenarios. MIDGARD's main features include a configurable, extensible, and difficulty-driven procedural landscape generation pipeline, with fast and photorealistic scene rendering based on Unreal Engine. Additionally, MIDGARD has built-in support for OpenAI Gym, a programming interface for feature extension (e.g., integrating new types of sensors, customizing exposing internal simulation variables), and a variety of simulated agent sensors (e.g., RGB, depth and instance/semantic segmentation). We evaluate MIDGARD's capabilities as a benchmarking tool for robot navigation utilizing a set of state-of-the-art reinforcement learning algorithms. The results demonstrate MIDGARD's suitability as a simulation and training environment, as well as the effectiveness of our procedural generation approach in controlling scene difficulty, which directly reflects on accuracy metrics. MIDGARD build, source code and documentation are available at https://midgardsim.org/.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.