Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

ProNet DB: A proteome-wise database for protein surface property representations and RNA-binding profiles (2205.07673v2)

Published 16 May 2022 in q-bio.QM, q-bio.BM, and q-bio.MN

Abstract: The rapid growth in the number of experimental and predicted protein structures and more complicated protein structures challenge users in computational biology for utilizing the structural information and protein surface property representation. Recently, AlphaFold2 released the comprehensive proteome of various species, and protein surface property representation plays a crucial role in protein-molecule interaction prediction such as protein-protein interaction, protein-nucleic acid interaction, and protein-compound interaction. Here, we proposed the first comprehensive database, namely ProNet DB, which incorporates multiple protein surface representations and RNA-binding landscape for more than 326,175 protein structures covering 16 model organism proteomes from AlphaFold Protein Structure Database (AlphaFold DB) and experimentally validated protein structures deposited in Protein Data Bank (PDB). For each protein, we provided the original protein structure, surface property representation including hydrophobicity, charge distribution, hydrogen bond, interacting face, and RNA-binding landscape such as RNA binding sites and RNA binding preference. To interpret protein surface property representation and RNA binding landscape intuitively, we also integrate Mol* and Online 3D Viewer to visualize the representation on the protein surface. The pre-computed features are available for the users instantaneously and boost computational biology development including molecular mechanism exploration, geometry-based drug discovery and novel therapeutics development. The server is now available on https://proj.cse.cuhk.edu.hk/aihlab/pronet/.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.