Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

ProtScan: Modeling and Prediction of RNA-Protein Interactions (2412.20933v1)

Published 30 Dec 2024 in q-bio.BM

Abstract: CLIP-seq methods are valuable techniques to experimentally determine transcriptome-wide binding sites of RNA-binding proteins. Despite the constant improvement of such techniques (e.g. eCLIP), the results are affected by various types of noise and depend on experimental conditions such as cell line, tissue, gene expression levels, stress conditions etc., paving the way for the in silico modeling of RNA-protein interactions. Here we present ProtScan, a predictive tool based on consensus kernelized SGD regression. ProtScan denoises and generalizes the information contained in CLIP-seq experiments. It outperforms competitor state-of the-art methods and can be used to model RNA-protein interactions on a transcriptome-wide scale.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.