Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

An Interpretable MRI Reconstruction Network with Two-grid-cycle Correction and Geometric Prior Distillation (2205.07062v2)

Published 14 May 2022 in eess.IV and cs.CV

Abstract: Although existing deep learning compressed-sensing-based Magnetic Resonance Imaging (CS-MRI) methods have achieved considerably impressive performance, explainability and generalizability continue to be challenging for such methods since the transition from mathematical analysis to network design not always natural enough, often most of them are not flexible enough to handle multi-sampling-ratio reconstruction assignments. {In this work, to tackle explainability and generalizability, we propose a unifying deep unfolding multi-sampling-ratio interpretable CS-MRI framework.} The combined approach offers more generalizability than previous works whereas deep learning gains explainability through a geometric prior module. Inspired by the multigrid algorithm, we first embed the CS-MRI-based optimization algorithm into correction-distillation scheme that consists of three ingredients: pre-relaxation module, correction module and geometric prior distillation module. Furthermore, we employ a condition module to learn adaptively step-length and noise level, which enables the proposed framework to jointly train multi-ratio tasks through a single model. { The proposed model not only compensates for the lost contextual information of reconstructed image which is refined from low frequency error in geometric characteristic k-space}, but also integrates the theoretical guarantee of model-based methods and the superior reconstruction performances of deep learning-based methods. Therefore, it can give us a novel perspective to design biomedical imaging networks. { Numerical experiments show that our framework outperforms state-of-the-art methods in terms of qualitative and quantitative evaluations.} {Our method achieves 3.18 dB improvement at low CS ratio 10\% and average 1.42 dB improvement over other comparison methods on brain dataset using Cartesian sampling mask.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.