Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Expansion in Supercritical Random Subgraphs of Expanders and its Consequences (2205.04852v1)

Published 10 May 2022 in math.CO and math.PR

Abstract: In 2004, Frieze, Krivelevich and Martin [17] established the emergence of a giant component in random subgraphs of pseudo-random graphs. We study several typical properties of the giant component, most notably its expansion characteristics. We establish an asymptotic vertex expansion of connected sets in the giant by a factor of $\tilde{O}\left(\epsilon2\right)$. From these expansion properties, we derive that the diameter of the giant is typically $O_{\epsilon}\left(\log n\right)$, and that the mixing time of a lazy random walk on the giant is asymptotically $O_{\epsilon}\left(\log2 n\right)$. We also show similar asymptotic expansion properties of (not necessarily connected) linear sized subsets in the giant, and the typical existence of a large expander as a subgraph.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.