Gradient-Free optimization algorithm for single-qubit quantum classifier (2205.04746v1)
Abstract: In the paper, a gradient-free optimization algorithm for single-qubit quantum classifier is proposed to overcome the effects of barren plateau caused by quantum devices. A rotation gate RX({\phi}) is applied on a single-qubit binary quantum classifier, and the training data and parameters are loaded into {\phi} with the form of vector-multiplication. The cost function is decreased by finding the value of each parameter that yield the minimum expectation value of measuring the quantum circuit. The algorithm is performed iteratively for all parameters one by one, until the cost function satisfies the stop condition. The proposed algorithm is demonstrated for a classification task and is compared with that using Adam optimizer. Furthermore, the performance of the single-qubit quantum classifier with the proposed gradient-free optimization algorithm is discussed when the rotation gate in quantum device is under different noise. The simulation results show that the single-qubit quantum classifier with proposed gradient-free optimization algorithm can reach a high accuracy faster than that using Adam optimizer. Moreover, the proposed gradient-free optimization algorithm can quickly completes the training process of the single-qubit classifier. Additionally, the single-qubit quantum classifier with proposed gradient-free optimization algorithm has a good performance in noisy environments.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.