Papers
Topics
Authors
Recent
2000 character limit reached

Integrable deformations of superintegrable quantum circuits (2205.02038v5)

Published 4 May 2022 in nlin.SI and cond-mat.stat-mech

Abstract: Superintegrable models are very special dynamical systems: they possess more conservation laws than what is necessary for complete integrability. This severely constrains their dynamical processes, and it often leads to their exact solvability, even in non-equilibrium situations. In this paper we consider special Hamiltonian deformations of superintegrable quantum circuits. The deformations break superintegrability, but they preserve integrability. We focus on a selection of concrete models and show that for each model there is an (at least) one parameter family of integrable deformations. Our most interesting example is the so-called Rule54 model. We show that the model is compatible with a one parameter family of Yang-Baxter integrable spin chains with six-site interaction. Therefore, the Rule54 model does not have a unique integrability structure, instead it lies at the intersection of a family of quantum integrable models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. B. Sutherland, Beautiful Models. World Scientific Publishing Company, 2004.
  2. Cambridge University Press, 1993.
  3. J. Miller, Willard, S. Post, and P. Winternitz, “Classical and quantum superintegrability with applications,” J. Phys. A 46 (2013) no. 42, 423001, arXiv:1309.2694 [math-ph].
  4. J.-S. Caux and J. Mossel, “Remarks on the notion of quantum integrability,” J. Stat. Mech. 2011 (2011) 02023, arXiv:1012.3587 [cond-mat.str-el].
  5. A. Bobenko, M. Bordemann, C. Gunn, and U. Pinkall, “On two integrable cellular automata,” Comm. Math. Phys. 158 (1993) no. 1, 127 – 134.
  6. B. Buča, K. Klobas, and T. Prosen, “Rule 54: Exactly solvable model of nonequilibrium statistical mechanics,” J. Stat. Mech. 2021 (2021) no. 7, 074001, arXiv:2103.16543 [cond-mat.stat-mech].
  7. K. Klobas, M. Medenjak, T. Prosen, and M. Vanicat, “Time-dependent matrix product ansatz for interacting reversible dynamics,” Comm. Math. Phys. 371 (2019) no. 2, 651–688, arXiv:1807.05000.
  8. V. Alba, J. Dubail, and M. Medenjak, “Operator Entanglement in Interacting Integrable Quantum Systems: The Case of the Rule 54 Chain,” Phys. Rev. Lett. 122 (2019) no. 25, 250603, arXiv:1901.04521 [cond-mat.stat-mech].
  9. K. Klobas, B. Bertini, and L. Piroli, “Exact Thermalization Dynamics in the “Rule 54” Quantum Cellular Automaton,” Phys. Rev. Lett. 126 (2021) 160602, arXiv:2012.12256 [cond-mat.stat-mech].
  10. K. Klobas and B. Bertini, “Exact relaxation to Gibbs and non-equilibrium steady states in the quantum cellular automaton Rule 54,” SciPost Phys. 11 (2021) 106, arXiv:2104.04511 [cond-mat.stat-mech].
  11. S. Gopalakrishnan, “Operator growth and eigenstate entanglement in an interacting integrable Floquet system,” Phys. Rev. B 98 (2018) no. 6, 060302, arXiv:1806.04156 [cond-mat.stat-mech].
  12. A. J. Friedman, S. Gopalakrishnan, and R. Vasseur, “Integrable Many-Body Quantum Floquet-Thouless Pumps,” Phys. Rev. Lett. 123 (2019) 170603, arXiv:1905.03265 [cond-mat.stat-mech].
  13. M. Medenjak, G. Policastro, and T. Yoshimura, “Thermal transport in T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed conformal field theories: from integrability to holography,” Phys. Rev. D 103 (2020) no. 6, , arXiv:2010.15813 [cond-mat.stat-mech]. http://dx.doi.org/10.1103/PhysRevD.103.066012.
  14. T. Prosen, “Reversible Cellular Automata as Integrable Interactions Round-a-Face: Deterministic, Stochastic, and Quantized,” arXiv e-prints (2021) , arXiv:2106.01292 [cond-mat.stat-mech].
  15. L. D. Faddeev, “How Algebraic Bethe Ansatz works for integrable model,” arXiv e-prints (1996) , arXiv:hep-th/9605187 [hep-th].
  16. T. Gombor and B. Pozsgay, “Integrable spin chains and cellular automata with medium-range interaction,” Phys. Rev. E 104 (2021) no. 5, 054123, arXiv:2108.02053 [nlin.SI].
  17. K. Klobas and T. Prosen, “Space-like dynamics in a reversible cellular automaton,” SciPost Phys Core 2 (2020) no. 2, , arXiv:2004.01671 [cond-mat.stat-mech].
  18. B. Bertini, P. Kos, and T. Prosen, “Exact Correlation Functions for Dual-Unitary Lattice Models in 1+1 Dimensions,” Phys. Rev. Lett. 123 (2019) no. 21, , arXiv:1904.02140 [cond-mat.stat-mech].
  19. G. Giudice, G. Giudici, M. Sonner, J. Thoenniss, A. Lerose, D. A. Abanin, and L. Piroli, “Temporal Entanglement, Quasiparticles, and the Role of Interactions,” Phys. Rev. Lett. 128 (2022) no. 22, , arXiv:2112.14264 [cond-mat.stat-mech].
  20. V. Gritsev and A. Polkovnikov, “Integrable Floquet dynamics,” SciPost Phys. 2 (2017) no. 3, 021, arXiv:1701.05276 [cond-mat.stat-mech].
  21. M. Vanicat, L. Zadnik, and T. Prosen, “Integrable Trotterization: Local Conservation Laws and Boundary Driving,” Phys. Rev. Lett. 121 (2018) no. 3, 030606, arXiv:1712.00431 [cond-mat.stat-mech].
  22. B. Bertini, P. Kos, and T. Prosen, “Operator Entanglement in Local Quantum Circuits II: Solitons in Chains of Qubits,” SciPost Phys. 8 (2020) no. 4, 068, arXiv:1909.07410 [cond-mat.stat-mech].
  23. T. Gombor and B. Pozsgay, “Superintegrable cellular automata and dual unitary gates from Yang-Baxter maps,” SciPost Phys. 12 (2022) 102, arXiv:2112.01854 [cond-mat.stat-mech].
  24. M. Borsi and B. Pozsgay, “Construction and the ergodicity properties of dual unitary quantum circuits,” Phys. Rev. B 106 (2022) 014302, arXiv:2201.07768 [quant-ph].
  25. L. Piroli, B. Bertini, J. I. Cirac, and T. Prosen, “Exact dynamics in dual-unitary quantum circuits,” Phys. Rev. B 101 (2020) no. 9, 094304, arXiv:1911.11175 [cond-mat.stat-mech].
  26. B. Pozsgay, A. Hutsalyuk, L. Pristyák, and G. Takács, “Sub-lattice entanglement in an exactly solvable anyon-like spin ladder,” Phys. Rev. E 106 (2022) no. 4, 044120, arXiv:2205.01465 [cond-mat.stat-mech].
  27. S. Santra, A. Agarwala, and S. Bhattacharjee, “Statistics-tuned entanglement of the boundary modes in coupled Su-Schrieffer-Heeger chains,” Phys. Rev. B 103 (2021) no. 19, 195134, arXiv:2010.07327 [cond-mat.str-el].
  28. P. P. Kulish, “Factorization of the classical and the quantum S matrix and conservation laws,” Theor Math Phys 26 (1976) 132.
  29. B. Pozsgay, T. Gombor, and A. Hutsalyuk, “Integrable hard rod deformation of the Heisenberg spin chains,” Phys. Rev. E 104 (2021) no. 6, , arXiv:2108.13724 [cond-mat.stat-mech].
  30. P. Fendley, “Free fermions in disguise,” Journal of Physics A Mathematical General 52 (2019) no. 33, 335002, arXiv:1901.08078 [cond-mat.stat-mech].
  31. S. J. Elman, A. Chapman, and S. T. Flammia, “Free fermions behind the disguise,” Commun. Math. Phys. 388 (2021) 969–1003, arXiv:2012.07857 [quant-ph].
  32. Y. Stroganov, “LETTER TO THE EDITOR: The importance of being odd,” J. Phys. A 34 (2001) no. 13, L179–L185, arXiv:cond-mat/0012035 [cond-mat.stat-mech].
  33. B. Pozsgay, “A Yang-Baxter integrable cellular automaton with a four site update rule,” J. Phys. A 54 (2021) 384001, 2106.00696 [cond-mat.stat-mech].
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: