Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast data-driven model reduction for nonlinear dynamical systems (2204.14169v1)

Published 29 Apr 2022 in math.DS

Abstract: We present a fast method for nonlinear data-driven model reduction of dynamical systems onto their slowest nonresonant spectral submanifolds (SSMs). We use observed data to locate a low-dimensional, attracting slow SSM and compute a maximally sparse approximation to the reduced dynamics on it. The recently released SSMLearn algorithm uses implicit optimization to fit a spectral submanifold to data and reduce the dynamics to the normal form. Here, we present two simplified algorithms, which reformulate manifold fitting and normal form computation as explicit problems under certain assumptions. We show on both numerical and experimental datasets that these algorithms yield accurate and sparse rigorous models for essentially nonlinear (or non-linearizable) dynamics. The new algorithms are significantly simplified and provide a speedup of several orders of magnitude.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube