Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automatic Scenario Generation for Robust Optimal Control Problems (2204.14145v4)

Published 29 Apr 2022 in math.OC, cs.SY, and eess.SY

Abstract: Existing methods for nonlinear robust control often use scenario-based approaches to formulate the control problem as nonlinear optimization problems. Increasing the number of scenarios improves robustness, while increasing the size of the optimization problems. Mitigating the size of the problem by reducing the number of scenarios requires knowledge about how the uncertainty affects the system. This paper draws from local reduction methods used in semi-infinite optimization to solve robust optimal control problems with parametric uncertainty. We show that nonlinear robust optimal control problems are equivalent to semi-infinite optimization problems and can be solved by local reduction. By iteratively adding interim globally worst-case scenarios to the problem, methods based on local reduction provide a way to manage the total number of scenarios. In particular, we show that local reduction methods find worst case scenarios that are not on the boundary of the uncertainty set. The proposed approach is illustrated with a case study with both parametric and additive time-varying uncertainty. The number of scenarios obtained from local reduction is 101, smaller than in the case when all $2{14+3\times192}$ boundary scenarios are considered. A validation with randomly drawn scenarios shows that our proposed approach reduces the number of scenarios and ensures robustness even if local solvers are used.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.