Efficient Estimation of Structural Models via Sieves (2204.13488v2)
Abstract: We propose a class of sieve-based efficient estimators for structural models (SEES), which approximate the solution using a linear combination of basis functions and impose equilibrium conditions as a penalty to determine the best-fitting coefficients. Our estimators avoid the need to repeatedly solve the model, apply to a broad class of models, and are consistent, asymptotically normal, and asymptotically efficient. Moreover, they solve unconstrained optimization problems with fewer unknowns and offer convenient standard error calculations. As an illustration, we apply our method to an entry game between Walmart and Kmart.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.