Clustering Systems of Phylogenetic Networks
Abstract: Rooted acyclic graphs appear naturally when the phylogenetic relationship of a set $X$ of taxa involves not only speciations but also recombination, horizontal transfer, or hybridization, that cannot be captured by trees. A variety of classes of such networks have been discussed in the literature, including phylogenetic, level-1, tree-child, tree-based, galled tree, regular, or normal networks as models of different types of evolutionary processes. Clusters arise in models of phylogeny as the sets $\mathtt{C}(v)$ of descendant taxa of a vertex $v$. The clustering system $\mathscr{C}_N$ comprising the clusters of a network $N$ conveys key information on $N$ itself. In the special case of rooted phylogenetic trees, $T$ is uniquely determined by its clustering system $\mathscr{C}_T$. Although this is no longer true for networks in general, it is of interest to relate properties of $N$ and $\mathscr{C}_N$. Here, we systematically investigate the relationships of several well-studied classes of networks and their clustering systems. The main results are correspondences of classes of networks and clustering system of the following form: If $N$ is a network of type $\mathbb{X}$, then $\mathcal{C}_N$ satisfies $\mathbb{Y}$, and conversely if $\mathscr{C}$ is a clustering system satisfying $\mathbb{Y}$ then there is network $N$ of type $\mathbb{X}$ such that $\mathscr{C}\subseteq\mathscr{C}_N$.This, in turn, allows us to investigate the mutual dependencies between the distinct types of networks in much detail.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.