Measurements of Higgs boson production in the decay channel with a pair of $τ$ leptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV (2204.12957v2)
Abstract: Measurements of Higgs boson production, where the Higgs boson decays into a pair of $\tau$ leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb${-1}$. Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to $\tau$ leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be 0.82 $\pm$ 0.11 for inclusive Higgs boson production, 0.67 $\pm$ 0.19 (0.81 $\pm$ 0.17) for the production mainly via gluon fusion (vector boson fusion), and 1.79 $\pm$ 0.45 for vector boson associated Higgs boson production.
- S. L. Glashow, “Partial-symmetries of weak interactions”, Nucl. Phys. 22 (1961) 579, 10.1016/0029-5582(61)90469-2.
- S. Weinberg, “A model of leptons”, Phys. Rev. Lett. 19 (1967) 1264, 10.1103/PhysRevLett.19.1264.
- A. Salam, “Weak and electromagnetic interactions”, Conf. Proc. C 680519 (1968) 367, 10.1142/9789812795915_0034.
- F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett. 13 (1964) 321, 10.1103/PhysRevLett.13.321.
- P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett. 12 (1964) 132, 10.1016/0031-9163(64)91136-9.
- P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett. 13 (1964) 508, 10.1103/PhysRevLett.13.508.
- G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles”, Phys. Rev. Lett. 13 (1964) 585, 10.1103/PhysRevLett.13.585.
- P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev. 145 (1966) 1156, 10.1103/PhysRev.145.1156.
- T. W. B. Kibble, “Symmetry breaking in non-abelian gauge theories”, Phys. Rev. 155 (1967) 1554, 10.1103/PhysRev.155.1554.
- ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, 10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
- CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
- CMS Collaboration, “Observation of a new boson with mass near 125 GeV in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 and 8 TeV”, JHEP 06 (2013) 081, 10.1007/JHEP06(2013)081, arXiv:1303.4571.
- CMS Collaboration, “A measurement of the Higgs boson mass in the diphoton decay channel”, Phys. Lett. B 805 (2020) 135425, 10.1016/j.physletb.2020.135425, arXiv:2002.06398.
- CMS Collaboration, “Measurement of the properties of a Higgs boson in the four-lepton final state”, Phys. Rev. D 89 (2014) 092007, 10.1103/PhysRevD.89.092007, arXiv:1312.5353.
- ATLAS and CMS Collaborations, “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 and 8 TeV”, JHEP 08 (2016) 045, 10.1007/JHEP08(2016)045, arXiv:1606.02266.
- CMS Collaboration, “Combined measurements of Higgs boson couplings in proton–proton collisions at s=13TeV𝑠13TeV\sqrt{s}=13\,\text{Te}\text{V}square-root start_ARG italic_s end_ARG = 13 roman_Te roman_V”, Eur. Phys. J. C 79 (2019) 421, 10.1140/epjc/s10052-019-6909-y, arXiv:1809.10733.
- ATLAS Collaboration, “Combined measurements of Higgs boson production and decay using up to 80808080 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of proton-proton collision data at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV collected with the ATLAS experiment”, Phys. Rev. D 101 (2020) 012002, 10.1103/PhysRevD.101.012002, arXiv:1909.02845.
- ATLAS Collaboration, “Higgs boson production cross-section measurements and their EFT interpretation in the 4ℓ4ℓ4\ell4 roman_ℓ decay channel at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 TeV with the ATLAS detector”, Eur. Phys. J. C 80 (2020) 957, 10.1140/epjc/s10052-020-8227-9, arXiv:2004.03447. [Erratum: \DOI10.1140/epjc/s10052-020-08644-x, Erratum: \DOI10.1140/epjc/s10052-021-09116-6].
- CMS Collaboration, “Measurements of the Higgs boson width and anomalous \PH\PV\PV\PH\PV\PV\PH\PV\PV couplings from on-shell and off-shell production in the four-lepton final state”, Phys. Rev. D 99 (2019) 112003, 10.1103/PhysRevD.99.112003, arXiv:1901.00174.
- CMS Collaboration, “Measurements of tt¯Ht¯tH\mathrm{t\bar{t}H}roman_t over¯ start_ARG roman_t end_ARG roman_H production and the CP structure of the Yukawa interaction between the Higgs boson and top quark in the diphoton decay channel”, Phys. Rev. Lett. 125 (2020) 061801, 10.1103/PhysRevLett.125.061801, arXiv:2003.10866.
- ATLAS Collaboration, “CP properties of Higgs boson interactions with top quarks in the tt¯Ht¯tH\mathrm{t\bar{t}H}roman_t over¯ start_ARG roman_t end_ARG roman_H and tHtH\mathrm{tH}roman_tH processes using H→γγ→H𝛾𝛾\mathrm{H}\rightarrow\gamma\gammaroman_H → italic_γ italic_γ with the ATLAS detector”, Phys. Rev. Lett. 125 (2020) 061802, 10.1103/PhysRevLett.125.061802, arXiv:2004.04545.
- CMS Collaboration, “Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state”, Phys. Rev. D 104 (2021) 052004, 10.1103/PhysRevD.104.052004, arXiv:2104.12152.
- ATLAS Collaboration, “Constraints on Higgs boson properties using WW*(→eνμν)jjWW^{*}(\rightarrow e\nu\mu\nu)jjitalic_W italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( → italic_e italic_ν italic_μ italic_ν ) italic_j italic_j production in 36.1 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG=13 TeV pp collisions with the ATLAS detector”, 2021. arXiv:2109.13808. Submitted to Eur. Phys. J. C.
- ATLAS Collaboration, “Test of CP invariance in vector-boson fusion production of the Higgs boson in the H→\Pgt\Pgt→𝐻\Pgt\PgtH\to\Pgt\Pgtitalic_H → channel in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 with the ATLAS detector”, Phys. Lett. B 805 (2020) 135426, 10.1016/j.physletb.2020.135426, arXiv:2002.05315.
- CMS Collaboration, “Analysis of the CP𝐶𝑃CPitalic_C italic_P structure of the Yukawa coupling between the Higgs boson and τ𝜏\tauitalic_τ leptons in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 06 (2022) 012, 10.1007/JHEP06(2022)012, arXiv:2110.04836.
- Yu. A. Golfand and E. P. Likhtman, “Extension of the algebra of Poincaré group generators and violation of p invariance”, JETP Lett. 13 (1971) 323.
- J. Wess and B. Zumino, “Supergauge transformations in four-dimensions”, Nucl. Phys. B 70 (1974) 39, 10.1016/0550-3213(74)90355-1.
- ATLAS Collaboration, “Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb11{}^{~{}1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT of pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 01 (2018) 055, 10.1007/JHEP01(2018)055, arXiv:1709.07242.
- CMS Collaboration, “Search for additional neutral MSSM Higgs bosons in the ττ𝜏𝜏\tau\tauitalic_τ italic_τ final state in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 09 (2018) 007, 10.1007/JHEP09(2018)007, arXiv:1803.06553.
- CMS Collaboration, “Evidence for the 125 GeV Higgs boson decaying to a pair of τ𝜏\tauitalic_τ leptons”, JHEP 05 (2014) 104, 10.1007/JHEP05(2014)104, arXiv:1401.5041.
- CMS Collaboration, “Evidence for the direct decay of the 125 GeV Higgs boson to fermions”, Nature Phys. 10 (2014) 557, 10.1038/nphys3005, arXiv:1401.6527.
- ATLAS Collaboration, “Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector”, JHEP 04 (2015) 117, 10.1007/JHEP04(2015)117, arXiv:1501.04943.
- CMS Collaboration, “Observation of the Higgs boson decay to a pair of τ𝜏\tauitalic_τ leptons with the CMS detector”, Phys. Lett. B 779 (2018) 283, 10.1016/j.physletb.2018.02.004, arXiv:1708.00373.
- LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector”, CERN Report CERN-2017-002-M, 2016. 10.23731/CYRM-2017-002, arXiv:1610.07922.
- N. Berger et al., “Simplified template cross sections - stage 1.1”, LHC Higgs Cross Section Working Group Report LHCHXSWG-2019-003, DESY-19-070, 2019. arXiv:1906.02754.
- ATLAS Collaboration, “Cross-section measurements of the Higgs boson decaying into a pair of τ𝜏\tauitalic_τ-leptons in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Rev. D 99 (2019) 072001, 10.1103/PhysRevD.99.072001, arXiv:1811.08856.
- ATLAS Collaboration, “Measurements of Higgs boson production cross-sections in the H→τ+τ−→𝐻superscript𝜏superscript𝜏H\to\tau^{+}\tau^{-}italic_H → italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT decay channel in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, 2022. arXiv:2201.08269. Submitted to JHEP.
- CMS Collaboration, “Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ𝜏\tauitalic_τ leptons in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. Lett. 128 (2022) 081805, 10.1103/PhysRevLett.128.081805, arXiv:2107.11486.
- CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
- CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
- CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
- CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8\TeV”, JINST 10 (2015) P06005, 10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.
- CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.
- CMS Collaboration, “Performance of CMS muon reconstruction in \Pp\Pp\Pp\Pp\Pp\Pp collision events at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, JINST 7 (2012) P10002, 10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.
- CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
- M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018) P05011, 10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
- E. Bols et al., “Jet flavour classification using DeepJet”, JINST 15 (2020) P12012, 10.1088/1748-0221/15/12/P12012, arXiv:2008.10519.
- CMS Collaboration, “Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector”, CMS Detector Performance Note CMS-DP-2018-058, CERN, 2018.
- CMS Collaboration, “Performance of reconstruction and identification of τ𝜏\tauitalic_τ leptons decaying to hadrons and ντsubscript𝜈𝜏\nu_{\tau}italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P10005, 10.1088/1748-0221/13/10/P10005, arXiv:1809.02816.
- CMS Collaboration, “Identification of hadronic tau lepton decays using a deep neural network”, JINST 17 (2022) P07023, 10.1088/1748-0221/17/07/P07023, arXiv:2201.08458.
- CMS Collaboration, “Performance of the CMS missing transverse momentum reconstruction in pp data at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 8 TeV”, JINST 10 (2015) P02006, 10.1088/1748-0221/10/02/P02006, arXiv:1411.0511.
- D. Bertolini, P. Harris, M. Low, and N. Tran, “Pileup per particle identification”, JHEP 10 (2014) 059, 10.1007/JHEP10(2014)059, arXiv:1407.6013.
- CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
- L. Bianchini, J. Conway, E. K. Friis, and C. Veelken, “Reconstruction of the Higgs mass in H→ττ→𝐻𝜏𝜏H\to\tau\tauitalic_H → italic_τ italic_τ events by dynamical likelihood techniques”, J. Phys. Conf. Ser. 513 (2014) 022035, 10.1088/1742-6596/513/2/022035.
- B. K. Bullock, K. Hagiwara, and A. D. Martin, “Tau polarization and its correlations as a probe of new physics”, Nucl. Phys. B 395 (1993) 499, 10.1016/0550-3213(93)90045-Q.
- Particle Data Group, P. A. Zyla et al., “Review of particle physics”, Prog. Theor. Exp. Phys. 2020 (2020) 083C01, 10.1093/ptep/ptaa104.
- CMS Collaboration, “Electron performance using first data collected by CMS in 2016”, CMS Detector Performance Note CMS-DP-2016-026, 2016.
- CMS Collaboration, “Performance of muon reconstruction including alignment position errors for 2016 collision data”, CMS Detector Performance Note CMS-DP-2016-067, 2016.
- CMS Collaboration, “Tau lepton Run 2 trigger performance”, CMS Detector Performance Note CMS-DP-2019-012, 2019.
- CMS Collaboration, “An embedding technique to determine ττ𝜏𝜏\tau\tauitalic_τ italic_τ backgrounds in proton-proton collision data”, JINST 14 (2019) P06032, 10.1088/1748-0221/14/06/P06032, arXiv:1903.01216.
- CMS Collaboration, “Measurement of the Zγ*→ττ→Zsuperscript𝛾𝜏𝜏\mathrm{Z}\gamma^{*}\to\tau\tauroman_Z italic_γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → italic_τ italic_τ cross section in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV and validation of τ𝜏\tauitalic_τ lepton analysis techniques”, Eur. Phys. J. C 78 (2018) 708, 10.1140/epjc/s10052-018-6146-9, arXiv:1801.03535.
- J. Alwall et al., “MadGraph 5: Going beyond”, JHEP 06 (2011) 128, 10.1007/JHEP06(2011)128, arXiv:1106.0522.
- J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
- J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
- P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, 10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
- S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, 10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO Higgs boson production via gluon fusion matched with shower in POWHEG”, JHEP 04 (2009) 002, 10.1088/1126-6708/2009/04/002, arXiv:0812.0578.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, 10.1007/JHEP06(2010)043, arXiv:1002.2581.
- S. Alioli et al., “Jet pair production in POWHEG”, JHEP 04 (2011) 081, 10.1007/JHEP04(2011)081, arXiv:1012.3380.
- E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini, “Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM”, JHEP 02 (2012) 088, 10.1007/JHEP02(2012)088, arXiv:1111.2854.
- P. Nason and C. Oleari, “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG”, JHEP 02 (2010) 037, 10.1007/JHEP02(2010)037, arXiv:0911.5299.
- G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, “\PH\PWpm\PH\PWpm\PH\PWpm/\PH\PZ\PH\PZ\PH\PZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO”, JHEP 10 (2013) 083, 10.1007/JHEP10(2013)083, arXiv:1306.2542.
- H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth, “Higgs boson production in association with top quarks in the POWHEG BOX”, Phys. Rev. D 91 (2015) 094003, 10.1103/PhysRevD.91.094003, arXiv:1501.04498.
- K. Hamilton, P. Nason, E. Re, and G. Zanderighi, “NNLOPS simulation of Higgs boson production”, JHEP 10 (2013) 222, 10.1007/JHEP10(2013)222, arXiv:1309.0017.
- K. Hamilton, P. Nason, and G. Zanderighi, “Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator”, JHEP 05 (2015) 140, 10.1007/JHEP05(2015)140, arXiv:1501.04637.
- LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 3. Higgs properties: Report of the LHC Higgs Cross Section Working Group”, CERN Report CERN-2013-004, 2013. 10.5170/CERN-2013-004, arXiv:1307.1347.
- NNPDF Collaboration, “Parton distributions for the LHC run II”, JHEP 04 (2015) 040, 10.1007/JHEP04(2015)040, arXiv:1410.8849.
- NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, 10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
- T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
- CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, 10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
- CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
- K. Melnikov and F. Petriello, “Electroweak gauge boson production at hadron colliders through 𝒪(αs2)𝒪superscriptsubscript𝛼s2\mathcal{O}(\alpha_{\text{s}}^{2})caligraphic_O ( italic_α start_POSTSUBSCRIPT s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )”, Phys. Rev. D 74 (2006) 114017, 10.1103/PhysRevD.74.114017, arXiv:hep-ph/0609070.
- M. Czakon and A. Mitov, “Top++: A program for the calculation of the top-pair cross-section at hadron colliders”, Comput. Phys. Commun. 185 (2014) 2930, 10.1016/j.cpc.2014.06.021, arXiv:1112.5675.
- N. Kidonakis, “Top quark production”, in Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons, p. 139. 2014. arXiv:1311.0283. 10.3204/DESY-PROC-2013-03/Kidonakis.
- J. M. Campbell, R. K. Ellis, and C. Williams, “Vector boson pair production at the LHC”, JHEP 07 (2011) 018, 10.1007/JHEP07(2011)018, arXiv:1105.0020.
- T. Gehrmann et al., “\PWp\PWm\PWp\PWm\PWp\PWm production at hadron colliders in next to next to leading order QCD”, Phys. Rev. Lett. 113 (2014) 212001, 10.1103/PhysRevLett.113.212001, arXiv:1408.5243.
- S. Agostinelli et al., “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
- I. J. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning”. MIT Press, Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.
- A. V. Gritsan, R. Röntsch, M. Schulze, and M. Xiao, “Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques”, Phys. Rev. D 94 (2016) 055023, 10.1103/PhysRevD.94.055023, arXiv:1606.03107.
- S. Wunsch, R. Friese, R. Wolf, and G. Quast, “Identifying the relevant dependencies of the neural network response on characteristics of the input space”, Comput. Softw. Big Sci. 2 (2018) 5, 10.1007/s41781-018-0012-1, arXiv:1803.08782.
- X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks”, in Proceedings of the thirteenth international conference on artificial intelligence and statistics, p. 249. 2010.
- R. Shimizu et al., “Balanced mini-batch training for imbalanced image data classification with neural network”, in 2018 First International Conference on Artificial Intelligence for Industries (AI4I), p. 27. 2018. 10.1109/AI4I.2018.8665709.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, 2014. arXiv:1412.6980.
- A. N. Tikhonov, “Solution of incorrectly formulated problems and the regularization method”, Soviet Math. Dokl. 4 (1963) 1035.
- S. Baker and R. D. Cousins, “Clarification of the use of chi-square and likelihood functions in fits to histograms”, Nucl. Instrum. Meth. 221 (1984) 437, 10.1016/0167-5087(84)90016-4.
- CDF Collaboration, “Search for neutral MSSM Higgs bosons decaying to tau pairs in \Pp\Pap\Pp\Pap\Pp\Pap collisions at s=1.96𝑠1.96\sqrt{s}=1.96square-root start_ARG italic_s end_ARG = 1.96 TeV”, Phys. Rev. Lett. 96 (2006) 011802, 10.1103/PhysRevLett.96.011802, arXiv:hep-ex/0508051.
- CMS Collaboration, “Search for the associated production of the Higgs boson and a vector boson in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV via Higgs boson decays to τ𝜏\tauitalic_τ leptons”, JHEP 06 (2019) 093, 10.1007/JHEP06(2019)093, arXiv:1809.03590.
- R. J. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples”, Comput. Phys. Commun. 77 (1993) 219, 10.1016/0010-4655(93)90005-W.
- CMS Collaboration, “Measurements of inclusive \PW\PW\PW and \PZ\PZ\PZ cross sections in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=7\TeV𝑠7\TeV\sqrt{s}=7\TeVsquare-root start_ARG italic_s end_ARG = 7”, JHEP 01 (2011) 080, 10.1007/JHEP01(2011)080, arXiv:1012.2466.
- CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in \Pp\Pp\Pp\Pp\Pp\Pp collisions at 8 TeV”, JINST 12 (2017) P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
- CMS Collaboration, “Measurement of the differential cross section for top quark pair production in pp collisions at s=8\TeV𝑠8\TeV\sqrt{s}=8\TeVsquare-root start_ARG italic_s end_ARG = 8”, Eur. Phys. J. C 75 (2015) 542, 10.1140/epjc/s10052-015-3709-x, arXiv:1505.04480.
- CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
- CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at s=13\TeV𝑠13\TeV\sqrt{s}=13{\TeV}square-root start_ARG italic_s end_ARG = 13”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.
- CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s=13TeV𝑠13TeV\sqrt{s}=13~{}{\mathrm{TeV}}square-root start_ARG italic_s end_ARG = 13 roman_TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.
- J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 023001, 10.1088/0954-3899/43/2/023001, arXiv:1510.03865.
- HEPData record for this analysis, 2022. 10.17182/hepdata.127974.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.