Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Quantifying Unknown Quantum Entanglement via a Hybrid Quantum-Classical Machine Learning Framework (2204.11500v1)

Published 25 Apr 2022 in quant-ph and cs.LG

Abstract: Quantifying unknown quantum entanglement experimentally is a difficult task, but also becomes more and more necessary because of the fast development of quantum engineering. Machine learning provides practical solutions to this fundamental problem, where one has to train a proper machine learning model to predict entanglement measures of unknown quantum states based on experimentally measurable data, say moments or correlation data produced by local measurements. In this paper, we compare the performance of these two different machine learning approaches systematically. Particularly, we first show that the approach based on moments enjoys a remarkable advantage over that based on correlation data, though the cost of measuring moments is much higher. Next, since correlation data is much easier to obtain experimentally, we try to better its performance by proposing a hybrid quantum-classical machine learning framework for this problem, where the key is to train optimal local measurements to generate more informative correlation data. Our numerical simulations show that the new framework brings us comparable performance with the approach based on moments to quantify unknown entanglement. Our work implies that it is already practical to fulfill such tasks on near-term quantum devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. C. H. Bennett and S. J. Wiesner, Physical review letters 69, 2881 (1992).
  2. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
  3. I. L. Chuang and M. A. Nielsen, Journal of Modern Optics 44, 2455 (1997).
  4. S. Van Enk and C. Beenakker, Physical review letters 108, 110503 (2012).
  5. Z. Wei and L. Lin, Physical Review A 103, 032215 (2021).
  6. L. Lin and Z. Wei, Physical Review A 104, 062433 (2021).
  7. P. Horodecki, Physical review letters 90, 167901 (2003).
  8. S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms (Cambridge university press, 2014).
  9. D. Wolpert and W. Macready, IEEE Transactions on Evolutionary Computation 1, 67 (1997).
  10. B. Schumacher and M. A. Nielsen, Physical Review A 54, 2629 (1996).
  11. S. Lloyd, Physical Review A 55, 1613 (1997).
  12. V. Vedral, Reviews of Modern Physics 74, 197 (2002).
  13. V. Vedral and M. B. Plenio, Physical Review A 57, 1619 (1998).
  14. S. Zohren and R. D. Gill, Physical review letters 100, 120406 (2008).
  15. T.-C. Wei, Physical Review A 78, 012327 (2008).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube