2000 character limit reached
Duoidal $\infty$-categories of operadic modules (2204.11152v1)
Published 23 Apr 2022 in math.CT and math.AT
Abstract: In this paper we study duoidal structures on $\infty$-categories of operadic modules. Let $\mathcal{O}{\otimes}$ be a small coherent $\infty$-operad and let $\mathcal{P}{\otimes}$ be an $\infty$-operad. If a $\mathcal{P}\otimes\mathcal{O}$-monoidal $\infty$-category $\mathcal{C}{\otimes}$ has a sufficient supply of colimits, then we show that the $\infty$-category ${\rm Mod}_A{\mathcal{O}}(\mathcal{C})$ of $\mathcal{O}$-$A$-modules in $\mathcal{C}{\otimes}$ has a structure of $(\mathcal{P},\mathcal{O})$-duoidal $\infty$-category for any $\mathcal{P}\otimes\mathcal{O}$-algebra object $A$.