Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Map monoidales and duoidal $\infty$-categories (2406.00223v1)

Published 31 May 2024 in math.CT and math.AT

Abstract: In this paper we give an example of duoidal $\infty$-categories. We introduce map $\mathcal{O}$-monoidales in an $\mathcal{O}$-monoidal $(\infty,2)$-category for an $\infty$-operad $\mathcal{O}{\otimes}$. We show that the endomorphism mapping $\infty$-category of a map $\mathcal{O}$-monoidale is a coCartesian $(\Delta{\rm op},\mathcal{O})$-duoidal $\infty$-category. After that, we introduce a convolution product on the mapping $\infty$-category from an $\mathcal{O}$-comonoidale to an $\mathcal{O}$-monoidale. We show that the $\mathcal{O}$-monoidal structure on the duoidal endomorphism mapping $\infty$-category of a map $\mathcal{O}$-monoidale is equivalent to the convolution product on the mapping $\infty$-category from the dual $\mathcal{O}$-comonoidale to the map $\mathcal{O}$-monoidale.

Summary

We haven't generated a summary for this paper yet.