Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On higher monoidal $\infty$-categories (2111.00158v1)

Published 30 Oct 2021 in math.CT and math.AT

Abstract: In this paper we introduce a notion of $\mathbf{O}$-monoidal $\infty$-categories for a finite sequence $\mathbf{O}{\otimes}$ of $\infty$-operads, which is a generalization of the notion of higher monoidal categories in the setting of $\infty$-categories. We show that the $\infty$-category of coCartesian $\mathbf{O}$-monoidal $\infty$-categories and right adjoint lax $\mathbf{O}$-monoidal functors is equivalent to the opposite of the $\infty$-category of Cartesian $\mathbf{O}{\rm rev}$-monoidal $\infty$-categories and left adjoint oplax $\mathbf{O}{\rm rev}$-monoidal functors, where $\mathbf{O}{\otimes}_{\rm rev}$ is a sequence obtained by reversing the order of $\mathbf{O}{\otimes}$.

Summary

We haven't generated a summary for this paper yet.