A Swanson-like Hamiltonian and the inverted harmonic oscillator (2204.09968v1)
Abstract: We deduce the eigenvalues and the eigenvectors of a parameter-dependent Hamiltonian $H_\theta$ which is closely related to the Swanson Hamiltonian, and we construct bi-coherent states for it. After that, we show how and in which sense the eigensystem of the Hamiltonian $H$ of the inverted quantum harmonic oscillator can be deduced from that of $H_\theta$. We show that there is no need to introduce a different scalar product using some ad hoc metric operator, as suggested by other authors. Indeed we prove that a distributional approach is sufficient to deal with the Hamiltonian $H$ of the inverted oscillator.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.