Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bures-Wasserstein minimizing geodesics between covariance matrices of different ranks (2204.09928v1)

Published 21 Apr 2022 in math.DG and math.MG

Abstract: The set of covariance matrices equipped with the Bures-Wasserstein distance is the orbit space of the smooth, proper and isometric action of the orthogonal group on the Euclidean space of square matrices. This construction induces a natural orbit stratification on covariance matrices, which is exactly the stratification by the rank. Thus, the strata are the manifolds of symmetric positive semi-definite (PSD) matrices of fixed rank endowed with the Bures-Wasserstein Riemannian metric. In this work, we study the geodesics of the Bures-Wasserstein distance. Firstly, we complete the literature on geodesics in each stratum by clarifying the set of preimages of the exponential map and by specifying the injection domain. We also give explicit formulae of the horizontal lift, the exponential map and the Riemannian logarithms that were kept implicit in previous works. Secondly, we give the expression of all the minimizing geodesic segments joining two covariance matrices of any rank. More precisely, we show that the set of all minimizing geodesics between two covariance matrices $\Sigma$ and $\Lambda$ is parametrized by the closed unit ball of $\mathbb{R}{(k-r)\times(l-r)}$ for the spectral norm, where $k, l, r$ are the respective ranks of $\Sigma$, $\Lambda$, $\Sigma$$\Lambda$. In particular, the minimizing geodesic is unique if and only if $r = \min(k, l)$. Otherwise, there are infinitely many.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube