Large Deviations Principle for Bures-Wasserstein Barycenters (2409.11384v1)
Abstract: We prove the large deviations principle for empirical Bures-Wasserstein barycenters of independent, identically-distributed samples of covariance matrices and covariance operators. As an application, we explore some consequences of our results for the phenomenon of dimension-free concentration of measure for Bures-Wasserstein barycenters. Our theory reveals a novel notion of exponential tilting in the Bures-Wasserstein space, which, in analogy with Cr\'amer's theorem in the Euclidean case, solves the relative entropy projection problem under a constraint on the barycenter. Notably, this method of proof is easy to adapt to other geometric settings of interest; with the same method, we obtain large deviations principles for empirical barycenters in Riemannian manifolds and the univariate Wasserstein space, and we obtain large deviations upper bounds for empirical barycenters in the general multivariate Wasserstein space. In fact, our results are the first known large deviations principles for Fr\'echet means in any non-linear metric space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.