Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Domain Specific Fine-tuning of Denoising Sequence-to-Sequence Models for Natural Language Summarization (2204.09716v1)

Published 6 Apr 2022 in cs.CL and cs.AI

Abstract: Summarization of long-form text data is a problem especially pertinent in knowledge economy jobs such as medicine and finance, that require continuously remaining informed on a sophisticated and evolving body of knowledge. As such, isolating and summarizing key content automatically using NLP techniques holds the potential for extensive time savings in these industries. We explore applications of a state-of-the-art NLP model (BART), and explore strategies for tuning it to optimal performance using data augmentation and various fine-tuning strategies. We show that our end-to-end fine-tuning approach can result in a 5-6\% absolute ROUGE-1 improvement over an out-of-the-box pre-trained BART summarizer when tested on domain specific data, and make available our end-to-end pipeline to achieve these results on finance, medical, or other user-specified domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.