Papers
Topics
Authors
Recent
2000 character limit reached

The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for Two-Dimensional Systems (2204.07734v1)

Published 16 Apr 2022 in quant-ph, hep-th, math-ph, and math.MP

Abstract: Open quantum systems are, in general, described by a density matrix that is evolving under transformations belonging to a dynamical semigroup. They can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation. We exhaustively study the case of a Hilbert space of dimension $2$. First, we find final fixed states (called pointers) of an evolution of an open system, and we then obtain a general solution to the FGKLS equation and confirm that it converges to a pointer. After this, we check that the solution has physical meaning, i.e., it is Hermitian, positive and has trace equal to $1$, and find a moment of time starting from which the FGKLS equation can be used - the range of applicability of the semigroup symmetry. Next, we study the behavior of a solution for a weak interaction with an environment and make a distinction between interacting and non-interacting cases. Finally, we prove that there cannot exist oscillating solutions to the FGKLS equation, which would resemble the behavior of a closed quantum system.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.