Extremal results for graphs avoiding a rainbow subgraph (2204.07567v3)
Abstract: We say that $k$ graphs $G_1,G_2,\dots,G_k$ on a common vertex set of size $n$ contain a rainbow copy of a graph $H$ if their union contains a copy of $H$ with each edge belonging to a distinct $G_i$. We provide a counterexample to a conjecture of Frankl on the maximum product of the sizes of the edge sets of three graphs avoiding a rainbow triangle. We propose an alternative conjecture, which we prove under the additional assumption that the union of the three graphs is complete. Furthermore, we determine the maximum product of the sizes of the edge sets of three graphs or four graphs avoiding a rainbow path of length three.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.