Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Product Inequalities for Multivariate Gaussian, Gamma, and Positively Upper Orthant Dependent Distributions (2204.06220v2)

Published 13 Apr 2022 in math.PR, math.ST, and stat.TH

Abstract: The Gaussian product inequality is an important conjecture concerning the moments of Gaussian random vectors. While all attempts to prove the Gaussian product inequality in full generality have been unsuccessful to date, numerous partial results have been derived in recent decades and we provide here further results on the problem. Most importantly, we establish a strong version of the Gaussian product inequality for multivariate gamma distributions in the case of nonnegative correlations, thereby extending a result recently derived by Genest and Ouimet [5]. Further, we show that the Gaussian product inequality holds with nonnegative exponents for all random vectors with positive components whenever the underlying vector is positively upper orthant dependent. Finally, we show that the Gaussian product inequality with negative exponents follows directly from the Gaussian correlation inequality.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com