Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Three-Dimensional Gaussian Product Inequality (1905.04279v1)

Published 10 May 2019 in math.PR

Abstract: We prove the 3-dimensional Gaussian product inequality, i.e., for any real-valued centered Gaussian random vector $(X,Y,Z)$ and $m\in \mathbb{N}$, it holds that ${\mathbf{E}}[X{2m}Y{2m}Z{2m}]\geq{\mathbf{E}}[X{2m}]{\mathbf{E}}[Y{2m}]{\mathbf{E}}[Z{2m}]$. Our proof is based on some improved inequalities on multi-term products involving 2-dimensional Gaussian random vectors. The improved inequalities are derived using the Gaussian hypergeometric functions and have independent interest. As by-products, several new combinatorial identities and inequalities are obtained.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.