Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Selecting Regularization Parameters for nuclear norm type minimization problems (2204.06206v1)

Published 13 Apr 2022 in math.OC

Abstract: The reconstruction of low-rank matrix from its noisy observation finds its usage in many applications. It can be reformulated into a constrained nuclear norm minimization problem, where the bound $\eta$ of the constraint is explicitly given or can be estimated by the probability distribution of the noise. When the Lagrangian method is applied to find the minimizer, the solution can be obtained by the singular value thresholding operator where the thresholding parameter $\lambda$ is related to the Lagrangian multiplier. In this paper, we first show that the Frobenius norm of the discrepancy between the minimizer and the observed matrix is a strictly increasing function of $\lambda$. From that we derive a closed-form solution for $\lambda$ in terms of $\eta$. The result can be used to solve the constrained nuclear-norm-type minimization problem when $\eta$ is given. For the unconstrained nuclear-norm-type regularized problems, our result allows us to automatically choose a suitable regularization parameter by using the discrepancy principle. The regularization parameters obtained are comparable to (and sometimes better than) those obtained by Stein's unbiased risk estimator (SURE) approach while the cost of solving the minimization problem can be reduced by 11--18 times. Numerical experiments with both synthetic data and real MRI data are performed to validate the proposed approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.