Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Variable importance measures for heterogeneous causal effects (2204.06030v3)

Published 12 Apr 2022 in stat.ME

Abstract: The recognition that personalised treatment decisions lead to better clinical outcomes has sparked recent research activity in the following two domains. Policy learning focuses on finding optimal treatment rules (OTRs), which express whether an individual would be better off with or without treatment, given their measured characteristics. OTRs optimize a pre-set population criterion, but do not provide insight into the extent to which treatment benefits or harms individual subjects. Estimates of conditional average treatment effects (CATEs) do offer such insights, but valid inference is currently difficult to obtain when data-adaptive methods are used. Moreover, clinicians are (rightly) hesitant to blindly adopt OTR or CATE estimates, not least since both may represent complicated functions of patient characteristics that provide little insight into the key drivers of heterogeneity. To address these limitations, we introduce novel nonparametric treatment effect variable importance measures (TE-VIMs). TE-VIMs extend recent regression-VIMs, viewed as nonparametric analogues to ANOVA statistics. By not being tied to a particular model, they are amenable to data-adaptive (machine learning) estimation of the CATE, itself an active area of research. Estimators for the proposed statistics are derived from their efficient influence curves and these are illustrated through a simulation study and an applied example.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.