Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Malceiver: Perceiver with Hierarchical and Multi-modal Features for Android Malware Detection (2204.05994v1)

Published 12 Apr 2022 in cs.CR and cs.CV

Abstract: We propose the Malceiver, a hierarchical Perceiver model for Android malware detection that makes use of multi-modal features. The primary inputs are the opcode sequence and the requested permissions of a given Android APK file. To reach a malware classification decision the model combines hierarchical features extracted from the opcode sequence together with the requested permissions. The model's architecture is based on the Perceiver/PerceiverIO which allows for very long opcode sequences to be processed efficiently. Our proposed model can be easily extended to use multi-modal features. We show experimentally that this model outperforms a conventional CNN architecture for opcode sequence based malware detection. We then show that using additional modalities improves performance. Our proposed architecture opens new avenues for the use of Transformer-style networks in malware research.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)