Papers
Topics
Authors
Recent
Search
2000 character limit reached

Instability of the Luttinger liquids towards an exotic quantum state of matter with highly degenerate ground states: an anisotropic extension of the ferromagnetic spin-1 biquadratic model

Published 12 Apr 2022 in cond-mat.str-el | (2204.05692v2)

Abstract: An extensive investigation, both numerical and analytical, is performed for an anisotropic extension of the ferromagnetic spin-1 biquadratic model. The ground state phase diagram accommodates three symmetry-protected trivial phases, three coexisting fractal phases and six Luttinger liquid phases. A novel universality class arises from an instability of a Luttinger liquid towards an exotic quantum state of matter with infinitely degenerate ground states. The latter in turn is a scale-invariant quantum state of matter, which may be attributed to the coexistence of ${\rm SU}(2)$ spontaneous symmetry breaking with one type-B Goldstone mode on the characteristic line: $J_y=J_z$, and ${\rm U}(1)$ spontaneous symmetry breaking without any gapless Goldstone mode on the characteristic line $J_x/J_z=0$, together with their cyclic permutations with respect to $x$, $y$ and $z$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.