Anytime-valid sequential testing for elicitable functionals via supermartingales
Abstract: We design sequential tests for a large class of nonparametric null hypotheses based on elicitable and identifiable functionals. Such functionals are defined in terms of scoring functions and identification functions, which are ideal building blocks for constructing nonnegative supermartingales under the null. This in turn yields sequential tests via Ville's inequality. Using regret bounds from Online Convex Optimization, we obtain rigorous guarantees on the asymptotic power of the tests for a wide range of alternative hypotheses. Our results allow for bounded and unbounded data distributions, assuming that a sub-$\psi$ tail bound is satisfied.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.